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Abstract In this paper, a recursion subspace-based subspace-based methods, many computationally efficient
method (RSM) is presented to estimate the bearings of in- subspace-based methods for bearing estimation are devel-
cident signals impinging on a uniform linear array (ULA). oped, which do not rely on the EVD computation. To
Unlike the existing linear operation based methods, such avoid the EVD of the covariance matrix, the linear opera-
as the signal subspace method without eigendecomposition tion based methods [3]-[6] partition the array response ma-
(SUMWE) of Xin et al, that calculate the noise subspace, trix in the absence of noise (or the covariance matrix in the
the RSM method finds a cleaner signal subspace by means presence of noise) into a signal or noise subspace. The
of a successive recursion procedure. Thus, the RSM method bearing estimations are yielded in a manner similar to the
has the advantages of computational simplicity and accurate MUSIC algorithm. Nevertheless, the linear operation based
estimation, in particular for a large array. Numerical results methods, such as the methods of bearing estimation with-
are presented to compare the performance the RSM method out eigendecomposition (BEWE) [3], the projector method
with that of the SUMWE methods. (PM) [4] and the subspace method without engendecompo-
key words: Sensorarray signalprocessing, Bearing estima- sition (SWEDE) [5], essentially involve the estimated co-
tion, Forward/backward spatial smoothing (FBSS). variance matrix and several times of complex matrix-matrix

products, and thereby are still computationally intensive.
1. Introduction While the subspace-based method without eigendecompo-
High-resolution bearing estimation of incident signals im- sition (SUMWE) [6] requires relatively lower computational
pinging on an array of sensors is an important problem burden than the other linear operation based methods due to
in many sensor systems, such as wireless communications, avoiding the estimated covariance matrix and is suitable for
radar, sonar and so on. For high-resolution bearing estima- coherent signals, it is less accurate than the MUSIC estima-
tions of narrowband signals, there have been a number of tor for uncorrelated signals because its working array aper-
approaches including the maximum likelihood (ML) [1] and ture becomes small.
subspace-based methods. The ML methods yield the opti- In this paper, we develop a recursion subspace-based
mal bearing estimations by solving a multidimensional non- method (RSM) for bearing estimation that has the advantage
linear minimization problem [1]. Unfortunately, the multidi- of computational simplicity and maintains the estimation ac-
mensional nonlinear minimization procedure is rather com- curacy of the bearing estimation methods. Unlike the ex-
putationally cumbersome, consequently implying that the isting subspace-based methods, the RSM method attains the
ML methods are unsuitable for real-time implementations. signal subspace by means of a successive refinement proce-
In contrast to the ML methods, the subspace-based meth- dure, and does not involve the estimated covariance matrix
ods only yield the suboptimal bearing estimations but have or its EVD. Therefore, the RSM method has the advantage
the advantage of computational simplicity, and thereby have of computational simplicity over the EVD-based methods.
received considerable attention. As a result, the subspace-
based methods, such as the MUSIC [2], have been widely in- 2. Data Model and Basic Assumptions
vestigated. However, the subspace-based methods in general Consider a uniform linear array (ULA) composed of M
rely on the estimate of a covariance matrix and its eigenvalue isotropic sensors. Impinging upon the array are p narrow-
decomposition (EVD). Unfortunately, the procedure of esti- band signals {ul (t), u2 (t),... , up(t) } from distinct direc-
mating the covariance matrix and computing the eigenvalues tions {HO, 02, HOp} . The p narrow-band signal sources,
is still computationally intensive and time-consuming, espe- centered around a known frequency wo, are placed in the
cially for a very large array, which implies that the subspace- far field, and thereby the wavefronts can be approximated as
based methods depending on eigendecomposition are unsuit- planar. For simplicity, we also assume that the sources and
able for some practical situations where the number of sen- the sensors are in the same plane. Thus, employing complex
sors is large and/or the directions of incident signals need envelope representation, the M x 1 received vector of the
to be tracked in an on line manner. Thus, the ability to ac- array can be expressed as
curately resolve the incident signals with low computational
complexity becomes very crucial in the practical environ- T P

ments. U~~~~~~~~~~~~~~~(t)= [Ul (t), , ?M (t)]T=E a (0i) ui (t) + n(t), (1l)ments.'
To reduce the computational burden of the classical i=1
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steering vector of the array toward direction Oi, ui (t) is ULA, we define a new observation data from (1) and (3)
the scalar complex waveform referred to as the ith signal, as yo(t) = [y2(t),... ,yM(t)]T = AI(O)Du(t) + ni(t),
Tm-i (0i) = (mi- 1)sin0i denotes the propagation delay be- where AI (0) consists of the first M - 1 rows of A(0),
tween the first sensor (the reference point) and the mth sen- D = diag (eiwod/csin . ei<u)/ pOP) and ii(t)
sor to a wavefront impinging from direction Oi, where c de- [n2 (t), n3(t),... , nM (t)]T. To calculate the signal sub-
notes the propagation speed and d is the distance between space by a successive refinement procedure, we must also
two adjacent sensors, nm (t) is the additive noise at the mth define a reference signal by do (t) = Yi (t) = uT(t) l+nI (t),
sensor, and (.)T is transpose operation. where 1 = [1, 1,... , 1]T. In the sequel, we can calculate

In matrix notation, Equation (1) can be rewritten more the cross-correlation between the new observation data and
compactly as the reference signal, namely the initial information for the

y(t) = A(0)u(t) + n(t), (2) refinement procedure:

whereA(0) = [a(01),a(02),.. ,a (0p)] is the array re- = T
sponse matrix. = [r2,1,r3,1, ,rM,1]

Throughout the paper, we make the following basic as- =A1 (0)DRul
sumptions on the sensor data model: A A1 (0)3, (3)

A]: The array response matrix A(0) is unambigu- where ri,I = E [yi(t)y* (t)] (i = 2,3, ,M), and ,3
ous. That is to say, the array response vectors DRu1. It is easy to prove that 3,4 0 since both D and Ru
{a(0i), a(02),... , a(0p) } are linearly independent for are the nonsingular metrics. Therefore, the cross-correlation
any set of distinct incident angles {to, 02,... pO}, ryodo is a linear combination of all the direction vectors
which indicates that the matrix A(0) is of full rank. al (Oi)(i =1, 2,... ,p) with nonzero coefficients. Mean-

A2: We assume all the signals are zero-mean, jointly sta- while, it is indicated in (4) that the additive noise has been ef-
tionary, temporally complex white Gaussian random ficiently eliminated while calculating ryodo. Since the cross-
processes. The covariance matrix of the signal u(t) is correlation ryodo is able to capture the signal information,
given as we use it to define the following matched filter

N hi ryodo (4)

R,, =E[u(t)uH(t)] = liM Y-u(t)uH(t), ryodo 2
N-o N ' s

t=l Partitioning the new sensor data yo (t) with the matched fil-

where H is Hermitian transpose and t 1,,N de- ter h, in a manner similar to that of the multistage Wiener
note the sampled instants. The number of sources p is filter (MSWF) [8], we attain the desired signal di (t) and its
assumed to be accurately estimated by the method pro- orthogonal component yi (t) at the ith stage by
posed in [7] , and satisfies the inequality p < M/2. In di (t) = hH (t) (5)
addition, the signals are uncorrelated with the additive
noise. and

A3: The background noise is a temporally and spatially yi(t) = yi-I(t) - hidi(t) (6)
white Gaussian random process with zero mean and the
following second moments: = Yi- -(t)-hihi yi_I (t)

E [n(t)n (s)] 7O I where Bi I - h h is the blocking matrix, and hi is the
£ [n(t)nT(s)] 0, ~~~~~matched filter updated as

where o2 is noise variance, IM represents the M x M E[yi_ (t)di1 (t)]
identity matrix, 8t,s denotes Kroecker delta which is 1 E[y, (t)di l (t)] 2 (7)
fort = sandOfort 74 s.

It is indicated in (6)-(8) that the desired signal di (t) is ob-
tained by pre-filtering the observation data yi-I (t) with the

3. RSM for Bearing Estimation matched filters hi, but annihilated by the blocking matrix
In this section, we assume that the received sensor data y(t) Bi. The observation data is partitioned stage-by-stage in
sampled at N time instants t = 1, 2,... , N are available. the same refinement manner. As a result, we obtain the pre-
Meanwhile, the signals u(t) are assumed to be incoherent. filtering matrix Ts = [hi, . . ., hk] by p successive recursions.
In the next section, the RSM will be extended to the coherent Lemma 1: The p matched filters hi (i 1, 2 p) span
signal case by means of using the FBSS method to decorre- t o , nm
late the coherency of the signals.

Ts=A1(0)H, (8)
3.1 Bearing Estimation where H E C(><x9 is a full-rank matrix and T5
To begin with, using the shift-invariance property of the [h1, h2,, , hr]
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The proof of Lemma 1 can be seen in [7] and [9]. or noise subspace, the EVD-based MUSIC method resorts
It is easy to observe from (9)-(1 1) that the matched fil- to the estimated covariance matrix and its EVD computa-

ters hi (i 2, 3,... , p) are refined from the observation tion, requiring around O(M2N + M3) flops. Note that
data y,(t) yo(t) - hihHy0(t) and the desired signal O(M2N + M3) > O(p(M - 1)N) as M > p. There-
di (t) = hHy0(t). Consequently, the calculation accuracy fore, the RSM method is much more computationally effi-
of the matched filters hi (i = 2, 3, ,p) essentially re- cient than EVD-based MUSIC estimator, in particular when
lies on the initial information for the refinement procedure, M is large.
ryodo. Note that ry0d0 (See (4)) is able to capture the signal
information while efficiently suppressing the additive noise. 4. Extension to Coherent Signal Case
Therefore, the estimated signal subspace becomes cleaner In the presence of coherent signals, the signal covariance ma-
than that calculated by the conventional EVD-based meth- trix becomes singular, which leads to the divergence of some
ods because the EVD-based methods cannot eliminate the signal vectors into a noise subspace, and thereby a signal
additive noise while calculating the eigenvectors. subspace cannot be obtained correctly. To cure this problem,

Lemma 1 indicates that the signal subspace can be gen- we apply the forward/backward spatial smoothing (FBSS)
erated by means of the recursion procedure. Therefore, after technique [10] to the sensor data. Using the FBSS method,
obtaining the signal subspace, it is straightforward to employ we obtain the q x 1 sensor data vector of the lth forward
it in the signal subspace based methods for bearing estima- subarray:
tion, such as the MUSIC and ESPRIT estimators. In this T
paper, we obtain the bearing estimates in a manner similar to Yf (t) [Yl (t), Y1+l (t), Yq+l- li
that of the classical MUSIC method by searching p highest Aq(O)D1-1u(t) + ni(t), 2 < 1 < L, (10)
peaks of the spatial spectral function:

where Aq(a) [aq(O1),aq(O2), ,aq(Op)] with

(0) = (O)Pa(0) ) (9) aq(O) - [1,ewoT(0i) =,...I ni(t) -

[n1 (t), n1+2 (t),. , nq+1t_(t)] , and L = M- q + 1 is

where P71 =IM- 1-T5 (THTS)1 H the number of the forward subarrays. In the sequel, thewhere Pn = IM- IT,TsS T - Ts q x (L - 1) forward smoothed matrix can be written as
Note that the dimension of the observation space is re-

ducedfromMto M- 1. This implies that the RSM method f1
might not be as accurate as the classical MUSIC estimator L -1[Y2It,Y3 ( Yr>tj (11)
in direction-of-arrival (DOA) estimation. Nevertheless, for a
reasonably large array, M - 1 is very close to M, thereby A
indicating that the RSM method is comparable with the clas- formed by df (t) =y (t) (1 =2, 3,. , L), and thereby the
sical MUSIC method in DOA estimation performance. This (L - 1) x 1 forward smoothed reference signal vector can be
claim will be proved by simulations in Section V. Mean- expressed as
while, the RSM method obtains the initial information for -f 1 Yi(t)IT.
the refinement procedure by using the new observation data d (t) = [y (t), y (t), (12)
and the reference signal, which is capable of capturing the L - 1
signal information while efficiently suppressing the additive Similarly, we can also get the q x 1 sensor data vector of the
noise. Thereby, the RSM method is more accurate than the lth backward subarray:
linear operation based methods for bearing estimation, espe- H
cially in some severe environments such as small the sample yl (t) =[YM-1+2(t), yYM-1+1(t), , YL-1+2]
size and/or low signal-to-noise ratio (SNR). Furthermore, the =Aq (0)-2(lYly t)) -n-_e +t), 2 .1. L.( 13)
RSM method finds the signal subspace by the successive re-
finement procedure with p recursions, avoiding the estimated Consequently, the q X (L-1) backward smoothed matrix
covariance matrix and its eigendecomposition. Therefore, and the q x 1 backward smoothed reference signal vector
the RSM method is much more computationally efficient may be written as:
than the classical MUSIC estimator that relies on the esti-
mated covariance matrix and its EVD computation. Y (t) l - 21(t),y3(t) yI(t) (14)

3.2 Computational Complexity Requirement and
From (6)-(8), we can see that the dominate computational -b 1
cost among them is the calculation of the matched filter, d (t) =[1y(t), yG(t), ( (15)
which requires M - 1 complex multiplications and M -2
additions for each snapshots, equivalently approximately Thus, it follows from (12) and (15) that the for-
M - 1 floating point operations (or flops), and thereby ward/backward smoothed sensor data matrix can be formed
O((M- 1)N) flops for each matched filter. Consequently, by
the RSM method needs O(p(M -1)N) flops for calcu- -ot=1 [vf(t) b(t\] (6
lating the signal subspace. However, to find the signal X~ v
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Accordingly, the forward/backward smoothed reference sig- Step3: Obtain the bearing estimates of the coherent sig-
nal vector is given as nals by searching the highest p peaks of the spa-

1 -f,T -bT T tial spectrum S(O) = , where Pn
do(t) = d (t),~d (t)] (17) H

- H,(),a,o
[; 'q-tTs (Ts Ts))- Ts . Alternatively, the bearings

With the smoothed observation data and reference signal, the can also be yielded by the root-MUSIC estimator: find-
initial information for the refinement procedure can be cal- ing the p roots, say z1, Z2, * * * , zp that have the largest
culated as: magnitude, of the root-MUSIC polynomial s(z) =

£(=[(t)d(t)] z lpH(z)P_p(z) where p [1,z. .zq. 1

rYOdO E [90(t) *(01 yields the bearing estimates as Oi = arcsin (carg(zi)
1I --~ Fb-bk] \wod9

-2 (E [Yf (t)df' (t)j + E [Y (t)d (t)) in which arg (zi) denotes the phase angle of the com-
1 f b plex number zi.

- 2 VJd + (18) Since the first sensor data yi (t) cannot be used in the
where smoothed observation data, the number of subarrays is re-

f F~-~ -f*,1 duced from L to L -1 in the forward/backward spatial
r E [Y (t)d' (t)j smoothing procedures. However, the RSM method is still

L comparable with the MUSIC estimator based on the FBSS
L1 SE [L,ri, ,rl+q-1, ]T (19) with L subarrays and the EVD technique because it uses
L - 1 the cross-correlation between the smoothed observation data

b E Fb (t)db, l and the smoothed reference signal as the initial information
yjd [L ) ) for the refinement procedure, which efficiently eliminates

L the additive noise while capturing the signal information.
Y

:r-* 1+2,1'-- ,r-1+2,1]T From the Step 2of the summarized algorithm for the
1=2 bearing estimations of coherent signals, we can observe

Jqrf* (20) that the RSM method needs around 0(pq(L - 1)N) flops
yd to find the signal subspace. Note that the FBSS-based

in which Jq is a q x q reversal matrix with 1 along the cross- MUSIC estimator requires about O(q2LN + q3) flops for
diagonal and zero elsewhere, and ri, (i = 2, 3,... , M) are the same purpose. We generally let q = M - p and
defined in (9). In the sequel, the cross-correlation between thereby L = M - q + 1 p + 1. As a result, as
Yo(t) and do(t) can be eventually calculated as M > p we attain O(p2(M -p)N) 0(p2MN) flops

1 (
for the RSM and O((M _ p)2(p + 1)N + (M -p)3)

rtco = r + Jqrfd) (21) O((p + 1)M2N + M3) flops for the FBSS-based MUSIC.
Therefore, the RSM is more computationally efficient than

It follows from (20)-(22) that the additive noise has been the FBSS-based MUSIC in the calculation of the signal or
efficiently eliminated. Therefore, similar to the refinement noise subspace, especially as M becomes large.
procedure presented in Subsection A, we employ the nor-
malized cross-correlation, namely the matched filter hi = 5. Numerical Results
rgo o / Irgodo 1 2, as the initial information to partition the We now evaluate the performance of the RSM method for
smoothed observation data into a signal subspace. bearing estimation by computer simulations. Since the

The RSM algorithm for the bearing estimation of co- SUMWE method [6] outperforms the other linear operation
herent signals is summarized as follows: based methods, such as the BEWE [3], the PM [4] and the

Stepl: Apply the FBSS technique to the (M - 1) x 1 sen- SWEDE [5], but performs worse than the FBSS-based MU-
sor data yo and obtain the forward smoothed sensor SIC estimator in the bearing estimation accuracy, we will

-f (t) in (12). Meanwhile, the forward compare the performance of the RSM method with that ofdata matrix YO -f the SUMWE and FBSS-based methods.
smoothed reference signal vector df (t) is attained by Let the number of sensors of the ULA be 10. The spac-
(13). ings between the adjacent sensors equal half-wavelength.

Step2: Perform the following p recursions: Suppose that there are two signals impinging upon the ULA
For i 1, 2,... ,p : consisting of 10 sensors from the same signal source. The

pi-iidi_ - Zt=l Y21 (t)df* (t), first is a direct-path signal and the second refers to the scaled
I ( _f + Jqrf * and delayed replica of the first signal that represents the mul-ryi_ldi_l-2V yi-ldi-l q Yi-ldi-l J' tipath or the "smart" jammer. The propagation constants are

h r /II 112 {1, .5+j.3}. Thetruebearings areassumedtobe{2 7}.
dif (t) =hi7Y{,_ (t), The number of signals is assumed to be knownpriori or esti-
Yf(t) - Yf l(t) - h d(t) mated by the method [7]. Meanwhile, the background noise
1 1- 1 1 A A

F is a stationary Gaussian white random process that is uncor-
Attain the estimated signal subspace Ts [Il, , hp],. related with the signals. The SNR is defined as the ratio of
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thevariance of signal to the variance of noise. Estimation Performance versus Number of Snapshots (02 = 20)
102We have run 1000 independent trials to calculate the ,0 Propoed method

root-mean-square errors (RMSEs) of the estimated bearings 10'-ElFBSS-based MUSIC:L = 2

for the RSM, the EVD-based MUSIC, and the SUMWE ap-
proaches. The RMSEs of the estimated bearings versus SNR 5 -I-=
are plotted in Fig. 1, which indicates that the RSM method 10o-
is much more accurate than the SUMWE method in bear- 10-2

102 10'ing estimation as SNR<5dB, and more accurate than the NumberofSnapshots
FBSS-based MUSIC estimator when SNR is lower than OdB. Estimation Performance versus Number of Snapshots (02 70)

As SNR becomes higher than 5dB, the RSM method, the 10T M L = 3

SUMWE approach and the FBSS-based MUSIC estimator SUMWE

with 2 subarrays nearly obtain the same estimation accuracy.
Since the RSM method only has 2 subarrays, its estimation -e
accuracy is a little lower than that of the FBSS-based MUSIC
estimator with 3 subarrays, but still outperforms the FBSS- Nm-e of Snpht
based MUSIC method when SNR is low. Numberof Snapshots

Fig. 2 shows the RMSEs of the estimated bearings ver- Fig. 2 RMSEs of estimated DOAs of coherent signals versus number of
sus the number of snapshots. From Fig. 2, it can be observed snapshots. DOAs of signal 1 and 2 are 20 and 7°. M = 10, q = 8 and
that the estimation accuracy of the RSM method is very close SNR=5dB.
to that of the FBSS-based MUSIC estimator. Meanwhile,
the RSM method has a higher estimation accuracy than the [2] R. 0. Schmidt. A Signal Subspace Approach To Multi-
SUMWE method as N < 64 and has the estimation accu- pie Emiiter Location Spectral Estimation. Ph. D. thesis.
racy closed to that of the SUMWE estimator when N > 64. Stanford University, Stanford, CA, Nov. 1981.

Estimation Performance versus SNR (01 = 20) [3] P. Stoica and T. Soerstrom, "Statistical analysis of a sub-
1029_e- _ _ |_ _ _lllProposedmethod space method for bearing estimation without eigende-

- - - x-0 FBSS-based MUSIC: L = 3
10 El. FBSS-based MUSIC:L =2 composition," Proc. Inst. Elect. Eng. F, vol. 139, no. 4,

+SUMWE10 V --CRB pp.301-305,1992.
- nV -- t=[4] A. Eriksson, P. Stoica, and T. Soerstrom, "On-line sub-

10 L t = - -.Sspace algorithms for tracking moving sources," IEEE

-15 -10 -5 0 5 10 15 20 5 Trans. Signal Processing, vol. 42, pp. 2319-2330, Sept.
SNR(dB) 1994.
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<-;_ __ V-CRB vol. 42, no. 2, pp. 121-138, 1995.
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