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A two-step reliability test (TSRT) based unitary root-MUSIC algorithm for direction-of-arrival (DOA) 
estimation is proposed in this paper. We combine the conventional beamforming and unitary root-MUSIC 
to compute the DOA estimates and employ the pseudo-noise resampling (PR) technique to construct a 
DOA estimator bank. Unlike the standard reliability test, we devise the TSRT which retains the successful 
DOA estimates of a given DOA estimator separately to construct a DOA estimate set that is used to 
determine the final DOA estimates. Compared to the existing PR based DOA estimation methods, our 
solution can achieve better threshold performance by using fewer PR runs. Furthermore, the TSRT can 
be easily applied to other DOA estimation methods. Simulations verify the effectiveness of the proposed 
scheme.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Direction-of-arrival (DOA) estimation of signals impinging upon 
a sensor array is a fundamental problem in many fields such as 
radar, sonar and wireless communications [1–6]. Among them, the 
maximum likelihood (ML) [1] and subspace based methods [2–6]
have been studied extensively. The ML method is theoretically op-
timal and it is equivalent to the least squares estimator under the 
assumption of white Gaussian noise. Although the ML estimate has 
excellent statistical properties, it requires a nonlinear and multi-
dimensional optimization procedure which is computationally in-
tensive. In contrast, the subspace based algorithms offer a good 
compromise between resolution and computational complexity. At 
high signal-to-noise ratio (SNR) and large sample regimes, they can 
offer comparable performance to the ML method, but with a much 
lower computational cost. All estimators for nonlinear parameters 
suffer threshold effect [7–9]. But some will have threshold effect at 
higher SNR, and some at lower SNR. The most visual embodiment 
of this phenomenon is that the observed estimation errors rapidly 
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depart from the Cramér–Rao lower bound (CRLB) when either the 
number of samples or SNR is below a certain threshold.

To circumvent this issue, a vast number of techniques have 
been proposed in the literature. Gershman [10] has developed a 
joint estimation strategy, which selects the final DOA estimates 
from a pre-generated estimator bank consisting of several DOA es-
timators calculated simultaneously from a set of data or a given 
sample covariance matrix to reduce the performance degradation 
caused by outliers. In [11], a pseudo-random spatial spectrum re-
sampling technique has been used to improve the threshold per-
formance of subspace based DOA estimation methods. The essence 
of this approach is to resample the signal or noise subspace using a 
weighted MUSIC method with randomly generated weighting ma-
trices. Although this technique provides a considerable threshold 
improvement for the MUSIC algorithm, it seems to be too spe-
cific in that it cannot be applied in the same way to a variety 
of existing DOA estimation techniques. Motivated by the success of 
modern resampling schemes (e.g., bootstrap [12,13]), pseudo-noise 
resampling (PR) technique has been presented in [14–18]. Its un-
derlying idea is to utilize synthetically generated pseudo-noise to 
perturb the original noise in such a way that the outliers will be 
removed. In [15], a PR based unitary ESPRIT algorithm has been 
developed to mitigate the effect of complex eigenvalues which ap-
pear in pairs. Nevertheless, it cannot eliminate the effect caused 
by those DOA estimates deviated far away from the true DOAs. Va-
sylyshyn [16] has proposed a variant of the PR based root-MUSIC 
algorithm which combines the PR technique with the conventional 
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Table 1
List of acronyms.

CB-URM Conventional beamforming based unitary root-MUSIC
CRLB Cramér–Rao lower bound
DDS Distance detection strategy
DOA Direction-of-arrival
ML Maximum likelihood
PR Pseudo-noise resampling
TSRT Two-step reliability test
URM Unitary root-MUSIC
ULA Uniform linear array

beamforming based root-MUSIC. However, it essentially relies on 
the complex-valued computation which turns out to be compu-
tationally demanding, especially when the numbers of array ele-
ments and PR processes are large. Recently, we have proposed a 
PR based unitary root-MUSIC (PR-URM) algorithm [17]. The main 
contribution of [17] is the distance detection strategy (DDS), which 
is used to determine the final DOA estimates when all the DOA es-
timators fail to pass the reliability test. However, the DDS can only 
be applied to the root-MUSIC like algorithms since it needs the 
signal root information.

Although the previous PR based DOA estimation algorithms 
have achieved appealing effects, the performance improvement 
comes at the expense of a large number of PR runs. The existing 
PR based algorithms such as [14–18] have a common drawback 
that as long as there is an unsuccessful DOA estimate in the DOA 
estimator, the successful DOA estimates will be regarded as the 
unsuccessful one and they will be ruled out along with the whole 
estimator. Here, the successful DOA estimate denotes the DOA es-
timate localized within its DOA sector, while the unsuccessful DOA 
estimate is out of its DOA sector. This implies that the useful in-
formation of the successful DOA estimates will be neglected. More 
seriously, it may lead to the failure of the PR process. As a result, 
to achieve a favorable performance, these techniques need a vast 
number of PR processes, which may be not feasible in practice.

In this paper, a two-step reliability test (TSRT) based unitary 
root-MUSIC (URM) algorithm is devised. We only consider uniform 
linear array (ULA) in this study as URM is designed for it. With 
the result of [19], we first consider a conventional beamforming 
based unitary root-MUSIC (CB-URM) which is realized via com-
bining the URM with conventional beamforming to obtain DOA 
estimator which contains P DOA estimates. Here, P is the num-
ber of sources. After PR processing, unlike the methods in [14–17], 
we propose the TSRT to help select successful DOA estimates. Af-
ter dividing the DOA estimator bank into P DOA subsets, with each 
subset corresponding to a common DOA, the TSRTs between those 
subsets are statistically independent, which allows us to use fewer 
PR runs to collect enough successful DOA estimates that can be 
used to determine the final DOA estimates. Furthermore, the TSRT 
can be employed for other existing DOA estimation algorithms.

The remainder of the paper is organized as follows. The data 
model is presented in Section 2. The motivation and derivation 
of the proposed algorithm are provided in Section 3. Simulation 
results are given in Section 4. Finally, conclusions are drawn in 
Section 5. Acronyms used in the paper are given in Table 1.

2. Problem formulation

2.1. Signal model

Consider a ULA with M isotropic sensors. There are P (P < M) 
uncorrelated narrowband source signals impinging on the array 
from distinct directions {θ1, · · · , θP } in the far field. The M × 1 ob-
servation vector is

x(t) = As(t) + n(t), t = 1, · · · , N. (1)
Here, A = [a(θ1), · · · , a(θP )] is the steering matrix, s(t) = [s1(t), · · · ,
sP (t)]T is the source signal vector with (·)T being the transpose, N
is the number of snapshots and the steering vector due to the pth 
source is expressed as

a(θp) = [1, e j2π sin(θp)d/λ, · · · , e j2π(M−1)sin(θp)d/λ]T (2)

where λ is the carrier wavelength and d = λ/2 is the inter-element 
spacing. It is assumed that the noise vector n(t) is a white Gaus-
sian process with mean zero and covariance σ 2

n IM where σ 2
n is the 

power and IM is the M × M identity matrix. Moreover, the noise 
is uncorrelated with s(t). Our task is to estimate the P DOAs from 
the observed vector x(t). The covariance matrix of x(t) is

R = E[x(t)x(t)H ] = ARsAH + σ 2
n IM (3)

where E[ · ] is the mathematical expectation, (·)H is the conjugate 
transpose and Rs = E[s(t)s(t)H ] denotes the signal covariance ma-
trix.

2.2. Unitary root-MUSIC algorithm

The URM algorithm [6] utilizes a real-valued covariance matrix 
given as

C = 1

2
QH

M

(
R + JM R∗JM

)
QM

= Re
{

QH
M RQM

}
(4)

where Re{·} represents the real part, JM is an M × M exchange 
matrix with ones on its anti-diagonal and zeros elsewhere, (·)∗
represents complex conjugate and QM is a sparse unitary matrix, 
defined as [6,15]

QM =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
2

[
Il jIl
Jl − jJl

]
, for M = 2l

1√
2

⎡
⎣ Il 0l jIl

0T
l

√
2 0T

l

Jl 0l − jJl

⎤
⎦ , for M = 2l + 1.

(5)

Here, 0l is an l × 1 zero vector. Define the eigenvalue decomposi-
tion of C as

C = E�EH = ES�S EH
S + σ 2

n EN EH
N (6)

where ES = [e1, · · · , eP ], �S = diag{λ1, · · · , λP } and EN = [eP+1,

· · · , eM ] with {λi}P
i=1 being the signal eigenvalues, {ei}P

i=1 being 
its corresponding signal eigenvectors, {ei}M

i=P+1 being the noise 
eigenvectors and diag{·} being a diagonal matrix. Then the unitary 
root-MUSIC polynomial can be expressed as

fU-MUSIC(z) = ãT
(1/z)EN ET

N ã(z) (7)

where ã(z) = QH
Ma(z) with zi = e j2πd sin θi/λ being the root of (7). 

Through finding the P roots which are closest to the unit circle, 
we determine the DOAs:

θi = sin−1
( � (zi)λ

2πd

)
, i = 1, · · · , P (8)

where � represents the angle operator.

3. Proposed algorithm

It has been shown in [6] that the URM has a better performance 
than that of the root-MUSIC but with a much lower computational 
complexity since it is realized in terms of real-valued computa-
tion. However, it will suffer performance degradation, especially in 
the low SNR and small sample scenarios. This is due to the fact 
that the URM estimator cannot efficiently handle the outliers. To 
circumvent this issue, a TSRT based URM approach is devised for 
computationally efficient and accurate DOA estimation.
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Fig. 1. Conventional beamforming output and root radii of URM. M = 8, N = 10, 
SNR = −7 dB and two equal-power sources imping from 11◦ and 18◦ .

3.1. Conventional beamforming based URM

In this section, motivated by [19], the CB-URM algorithm is con-
sidered. Unlike the URM which determines the DOA estimates by 
choosing the roots that are closest to the unit circle, the CB-URM 
identifies the true signal roots by using the maximum output of 
conventional beamforming towards the previously estimated DOA 
candidates. Fig. 1 shows the conventional beamforming output and 
root radii of URM. According to the URM, the third and fifth roots 
at −11.8◦ and 15.4◦ , respectively, whose magnitudes are closest 
to one, are chosen as the signal roots. However, the fourth root at 
9.6◦ is reasonably a better choice than the third one. This is be-
cause, at low SNRs and small samples, the signal and noise roots 
may be merged together. In other words, the noise roots may have 
larger modulus than the signal roots. Thus, the standard way is not 
always able to correctly determine the signal roots. In contrast, the 
beamforming output depends on the response of the signal roots 
rather than the modulus. Therefore, using the beamforming out-
put to determine the signal roots is preferred over the standard 
approach.

3.2. Pseudo-noise resampling process

The key of the proposed method is to test the following hy-
pothesis H for each DOA estimator [15–18], which enables us to 
separate the normal and abnormal DOA estimators.

H: All the DOA estimates in a DOA estimator are located in �̂.

Here, �̂ contains the pre-estimated angular sectors of source local-
ization. A simple way of determining �̂ is to use the conventional 
beamforming [15–18]. Let

�̂ = �̂1 ∪ �̂2 ∪ · · · ∪ �̂F (9)

where F is the number of peaks of beamforming output,

�̂i = [θmax
i −θ left

i , θmax
i + θ

right
i ], i = 1, · · · , F

is the ith estimated DOA sector, θmax
i is the coordinate of the ith 

highest peak of the conventional beamforming output, θ left
i and 

θ
right are the left and right boundaries of the ith subinterval where 
i
both of them can be chosen as angular distances between the max-
imum of the ith peak and the left/right neighbor point with 3 dB 
drop, respectively. If the ith peak has no right or left 3 dB drop, the 
θ left

i and θ right
i can be chosen as the left and right boundary points 

of the ith peak’s lobe. Note that when there are closely spaced 
DOAs or SNR is extremely small, the conventional beamforming 
might have only one peak. In this case, the number of estimated 
sectors will be smaller than the number of sources. Fortunately, it 
has almost no impact on the performance of the proposed method 
if all the true DOAs contained in �̂. This will be further demon-
strated in Section 4.

When the hypothesis H is rejected, the data matrix X =
[x(1), · · · , x(N)] will be resampled K times using synthetically gen-
erated pseudo-noise. The M × N resampled data matrix is given as

X̄ = X + Y (10)

where Y is the M × N pseudo-noise matrix with mean zero and 
covariance matrix σ 2

Y IM . Here, σ 2
Y is the variance of the pseudo-

noise and its value should be comparable with the variance of the 
measurement noise σ 2

n . It is shown in [15–17] that we can esti-
mate σ 2

Y as σ̂ 2
Y = p · σ̂ 2

n where p ≈ 1 is a user-defined parameter 
and σ̂ 2

n is the consistent estimate of σ 2
n given by

σ̂ 2
n = 1

M − P

M∑
i=P+1

λ̂i (11)

with λ̂1 ≥ · · · ≥ λ̂M being the ordered eigenvalues of the sample 
covariance matrix R̂ = XXH/N .

3.3. Two-step reliability test

For each resampling run, we apply the CB-URM method to ob-
tain a DOA estimator ϒ which contains P DOA estimates. Let the 
ith estimator be

ϒ(i) =
[
θ̂

(i)
1 , · · · , θ̂ (i)

P

]T
(12)

where θ̂ (i)
1 ≤ · · · ≤ θ̂

(i)
P are the P DOA estimates obtained in the 

ith PR run. Assuming that after K PR runs, we have K estimators 
which are used to form a DOA estimator bank:

Bθ =
[
ϒ(1), · · · ,ϒ(K )

]

=

⎡
⎢⎢⎢⎢⎣

θ̂
(1)
1 θ̂

(2)
1 · · · θ̂

(K )
1

θ̂
(1)
2 θ̂

(2)
2 · · · θ̂

(K )
2

...
...

. . .
...

θ̂
(1)
P θ̂

(2)
P · · · θ̂

(K )
P

⎤
⎥⎥⎥⎥⎦ . (13)

The existing methods [10–16] employ the reliability test H to 
divide Bθ into two subsets: one subset contains J estimators that 
pass H, and the other contains the remaining (K − J ) estima-
tors for which this test fails. However, this approach has a main 
drawback that, for any tested DOA estimator, as long as there is an 
estimated DOA localized outside �̂, the whole estimator will be re-
jected by H. In other words, those DOA estimates localized inside 
�̂ will also be rejected. At low SNRs and small samples, although 
the probability that the whole estimator accepted by H is low, the 
probability of a single DOA estimate being localized in �̂ is much 
higher. This phenomenon is supported by the following example. 
We use the URM [6] algorithm to form the estimator. Furthermore, 
we utilize the conventional beamforming to determine the estima-
tor �̂. It is observed from Fig. 2 that when the SNR is smaller than 
2 dB, the probabilities that θ1 and θ2 can be localized in �̂ sepa-
rately are much higher than that of the whole estimator passing H.
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Fig. 2. Probability of passing reliability test. M = 8, N = 10, K = 10 and two equal-
power sources imping from θ1 = 11◦ and θ2 = 18◦ .

Therefore, if we remove the DOA estimates localized out of �̂
(we call them “unsuccessful DOA estimates”) and only retain those 
localized in �̂ (we call them “successful DOA estimates”), com-
pared with the conventional method, it is possible to use fewer 
PR runs to collect enough DOA estimates that can be used to de-
termine the final DOA estimates. Based on the analysis above, we 
now propose the TSRT method to divide the successful and un-
successful DOA estimates. Recall that �̂ consists of P sub-sectors 
with each sub-sector corresponding to a true DOA, i.e., {�̂i}P

i=1. To 
proceed, we divide Bθ into P subsets with each subset containing 
K DOA estimates that are corresponding to a common DOA and 
sorted in descending order. Let

Si =
[
θ̃

(1)
i , · · · , θ̃ (K )

i

]
(14)

be the ith subset with θ̃ (1)
i ≤ · · · ≤ θ̃

(K )
i being the sorted K DOA 

estimates in the ith row of Bθ . For the ith subset Si (i = 1, · · · , P ), 
the TSRT utilizes the ith sub-sector �̂i to test K DOA estimates 
in Si . Assume that there are Li DOA estimates localized in �̂i . After 
completing K tests, we divide Si into two parts:⎧⎪⎨
⎪⎩
Si,1 =

[
θ̃

(ki+1)

i , · · · , θ̃ (ki+Li)

i

]
(a)

Si,0 =
[
θ̃

(1)
i , · · · , θ̃ (ki)

i , θ̃
(ki+Li+1)

i , · · · , θ̃ (K )
i

]
(b)

(15)

where θ̃ (ki+1)

i denotes the first DOA estimate that is localized in 
�̂i , Si,1 contains Li successful DOA estimates (i.e., “successful DOA 
subset”) and Si,0 contains the remaining (K − Li) unsuccessful DOA 
estimates (i.e., “unsuccessful DOA subset”).

Remark 1. The success of the TSRT is established when �̂ contains 
all the true DOAs. This is the prerequisite for a successful PR tech-
nique. All the PR based DOA estimation methods such as [15–18]
need this prerequisite, otherwise the PR technique will be invalid. 
In fact, the TSRT can estimate all the DOAs successfully even if the 
number of sectors is smaller than the number of sources provided 
that all the sectors contains P true DOAs. For example, assume that 
there are three DOAs, namely, θ1, θ2 and θ3. Consider the follow-
ing cases: the θ1 is widely spaced with the other two DOAs, and 
θ2 and θ3 are closely spaced that the beamforming cannot resolve 
them such that there are only two distinct peaks where one peak 
is at θ1 and the other is around θ2 and θ3. According to (9), we ob-
tain an estimate of �̂ that has two sectors. In this case, the number 
of sectors in �̂ is smaller than 3. If �̂ contains the three DOAs, the 
proposed method is valid. However, if any of the three DOAs are 
localized out of �̂, the proposed method will be invalid, which is 
also true for all of the PR based DOA estimation methods. More-
over, for subspace based DOA estimation methods, accurate source 
number estimation is also a prerequisite for the success of these 
algorithms. If the number of sources is not correctly estimated, the 
proposed method will suffer severe performance degradation. The 
information theoretic criteria [21,22] or their variants [23–25] can 
be applied to estimate the number of sources.

3.4. Direction-of-arrival estimation

Although the probability of single DOA estimate localized in �̂
is much higher than that of the whole estimator, it is also ob-
served from Fig. 2 that we cannot assume that there always exists 
P non-empty {Si,1}P

i=1. In other words, for some subsets, all the 
DOA estimates may be localized out of their sectors. Consequently, 
we consider the following two cases:

1) The TSRT succeeds: each of the P subsets contains Li (Li > 0, 
i = 1, · · · , P ) successful DOA estimates.

2) The TSRT fails: there is at least one subset in which the K DOA 
estimates are localized out of their sectors.

For the first case, because S1,1, · · · , SP ,1, are all non-empty, we 
use the median to determine the final DOA estimates. The ith final 
DOA estimate can be determined by choosing the average of the 
two DOA estimates in the middle of the ith subset if K is even or 
choosing the median of the ith subset if K is odd, i.e.,

θ̂i = med
{
θ̃

(ki+1)

i , · · · , θ̃ (ki+Li)

i

}
, for i = 1, · · · , P (16)

where med{·} represents the median operator. More specifically, 
for arbitrary b1, · · · , b� , we have

med{b1, · · · ,b�} =
{

(c�/2 + c1+�/2)/2, if � is even
c(�+1)/2, if � is odd

(17)

where {c1, · · · , c�} represent the sorted {b1, · · · , b�}.
For the second case, we assume that there are Q (Q ≤ P ) sub-

sets containing no successful DOA estimates, while the remaining 
(P − Q ) subsets contains at least one successful DOA estimate. For 
the latter, we can directly apply (16) to determine their final DOA 
estimates. For the former, we use {q1, · · · , qQ } to represent the Q
unsuccessful subsets. It is easy to find that for Sqi (i = 1, · · · , Q ), 
Sqi ,1 is empty and Sqi ,0 contains K DOA estimates of Sqi . For this 
case, we can use the median or directly take the average of Sqi ,0
to determine their final DOA estimates. The proposed method for 
DOA estimation is summarized in Table 2.

Remark 2. The main difference between the proposed and exist-
ing methods is the reliability test after obtaining the estimator 
bank. In our solution, the TSRT works on the P subsets separately, 
which implies that the test of each subset is independent of the 
others and the testing results of each subset are retained sepa-
rately. This enables us to classify the successful DOA estimates as 
(15a). When Q > 0, the proposed approach uses the average or 
median to determine the Q final DOA estimates corresponding to 
Q unsuccessful subsets, while the remaining (P − Q ) DOAs can be 
determined via (15a) and (16). Meanwhile, in [17], we have shown 
that the performance of the DDS [17] is better than that of the 
median method when all the DOA estimates are rejected by H. 
For the proposed algorithm, and considering the advantages of the 
DDS technique, it is much better to choose the DDS rather than 
the median to determine the final DOAs since there may still exist 
such a case in which there is at least one unsuccessful DOA subset.
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Table 2
Pseudo-code of proposed method.

Step 1 Use an existing DOA estimation method to obtain P DOA estimates based on the data matrix X.
Step 2 Employ the conventional beamforming to pre-estimate the DOA sectors according to (9).
Step 3 Test the hypothesis H for this estimator.

• If H is accepted, terminate the algorithm.
• If H is rejected, utilize PR process to generate K resampled data matrices, and then apply the DOA estimation method in Step 1 to form the estimator bank 

of (13).
Step 4 Apply the TSRT to each resampled estimator from the estimator bank.

CASE 1 If all the subsets have at least one successful DOA estimate, then estimate the ith DOA θi via (16).
CASE 2 • If there are Q (0 < Q < P ) subsets that are unsuccessfully localized in their sectors, then we employ the median or average to determine the Q final DOA 

estimates.
• For the remaining (P − Q ) subsets that are successfully localized in their sectors, estimate the remaining (P − Q ) DOA estimates via (16).
Remark 3. The complexity of the proposed method is mainly 
caused by constructing of the estimator bank Bθ . As we know, the 
CB-URM algorithm is employed K times to obtain Bθ . Thus, the 
complexity of the proposed method is approximately K times as 
that of the CB-URM. On the other hand, the implementation of the 
CB-URM mainly requires two steps: i) the estimation of C, i.e., Ĉ, 
which is about O(2M2 N); ii) the EVD of Ĉ which is about O(M3), 
resulting in an overall complexity of O(2M2 N + M3). Therefore, 
the computational complexity of the proposed method is about 
O(K (2M2 N + M3)).

4. Simulation results

We compare the performance of the proposed algorithm with 
that of the URM [6], PR unitary ESPRIT [15], PR root-MUSIC [16]
and PR-URM [17] algorithms in terms of root mean square error 
(RMSE) performance. For the proposed approach, we always use 
the DDS [17] to help determine the final DOA estimates. Mean-
while, we examine their ability to remove outliers as well, namely, 
probability of unsuccessful estimators. The CRLB [20] is plotted 
as a benchmark. In our simulations, two independent narrowband 
Gaussian signals are assumed to impinge upon a ULA with M = 8
omnidirectional sensors from directions θ1 = 11◦ and θ2 = 18◦ . The 
noise is a zero-mean white Gaussian process. The SNR is defined 
as the ratio of the power of all source signals to that of the addi-
tive noise at each sensor. In all experiments, we assume that the 
source localization sectors and number of sources are known or es-
timated by [21–25]. 5000 Monte Carlo simulations are carried out 
to compute the RMSE, which is defined as

RMSE =

√√√√√ 1

5000P

P∑
i=1

5000∑
j=1

(θ̂i, j − θi)
2. (18)

In all experiments, we assume that the number of sources is 
known. According to (9), we use the conventional beamforming to 
pre-estimate �̂ in each independent run.

4.1. Choices of p and K

In the first example, we study the performance of the proposed 
method for different values of K , i.e., the number of PR runs. We 
choose K = 2, 5, 10 and 20 for comparison. We vary the SNR from 
−10 dB to 8 dB, while the number of snapshots is 50. It is seen 
from Fig. 3 that a larger K provides better performance. When 
K = 2, the proposed scheme has the worst performance. However, 
if we increase K to 5, the proposed method achieves a visible per-
formance improvement. Compared to K = 10, only slight accuracy 
improvement is attained for K = 20. However, the computational 
complexity of K = 20 is twice larger than that of K = 10. Thus, 
K should not be too large or too small. In general, K = 10 is an 
appropriate choice to provide a good performance for our solution.
Fig. 3. RMSE versus SNR for different values of K .

Fig. 4. RMSE versus SNR for different values of p.

We now examine the effects of different pseudo-noise power 
on the performance of the proposed method. Since the power is 
controlled by the user defined parameter p, we consider five cases, 
i.e., p = 0.2, p = 0.8, p = 1, p = 1.4 and p = 3. We set the num-
ber of PR runs as K = 10. The number of snapshots is N = 60. 
Fig. 4 shows the RMSE performance versus SNR. It is seen that 
when p is too small or too large, say, p = 0.2 or p = 3, the per-
formance of the proposed method is worse than the other three 
cases. When p approximately equals 1, the proposed method can 
offer a considerably improved performance, which is not affected 
by the selection of p. This is because when p is small, the power 
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Fig. 5. Probability of unsuccessful estimators versus SNR at N = 10.

Fig. 6. Probability of unsuccessful estimators versus SNR at N = 60.

of additive pseudo-noise is not large enough to perturb the orig-
inal noise. Thus, the performance of the proposed method cannot 
be improved significantly. However, since the pseudo-noise is di-
rectly added to the received samples, the modified SNR is lower 
than the original SNR. Therefore, p should not be too large. In gen-
eral, p = 1 is large enough in most cases. As a result, we set p = 1
in the following simulations.

4.2. Performance comparison

In this example, we study the ability of removing outliers un-
der small sample size as a function of SNR. We use probability 
of unsuccessful estimators which is calculated as the ratio of the 
number of unsuccessful DOA estimators to the total number of 
trials to examine the performance of each algorithm in terms of re-
moving outliers. In other words, in each independent run, if there 
is any DOA estimate localized out of its own DOA sector, we say 
this estimator is an unsuccessful DOA estimator. We set the num-
ber of PR runs as K = 10. Figs. 5 and 6 show the probability of 
unsuccessful estimators for N = 10 and N = 60, respectively. It is 
seen that the CB-URM has a better performance than the URM 
algorithm, and the proposed method provides a considerable per-
formance improvement. When N = 60, the proposed algorithm has 
Fig. 7. RMSE versus SNR. Two-source case: θ1 = 11◦ and θ2 = 18◦ .

almost removed all the outliers. However, the other DOA estima-
tion algorithms suffer a high probability of unsuccessful estimators 
no matter whether N is small or large. This also demonstrates that 
the proposed TSRT has a greater ability to construct a successful 
DOA estimator from limited number of PR runs compared to the 
conventional reliability test.

Next, we compare the RMSE performance versus SNR. We vary 
the signal power such that the input SNR changes from −10 to 
8 dB. We set the number of PR runs as K = 10 and the number 
of snapshots is N = 60. It is observed from Fig. 7 that the CB-URM 
method outperforms the URM, and the proposed method achieves 
the best performance, particularly at small SNRs. However, the per-
formance of other PR based algorithms is somewhat inferior to 
the proposed approach, because they all need a larger K to ob-
tain the accuracy similar to the proposed one when SNR is low. 
When the SNR is larger than 2 dB, the proposed and CB-URM al-
gorithms converge. This is due to the fact that, at high SNRs, all 
the DOA estimates are accepted by the hypothesis test which can 
also be observed from Fig. 6, and the proposed method is reduced 
to the CB-URM scheme. To further demonstrate the effectiveness 
of the proposed method, we consider a severe case when there 
are three DOAs: θ1 = −5◦ , θ2 = 5◦ and θ3 = 30◦ . Note that in 
this case, there are only two peaks of the beamforming output. 
Since θ1 and θ2 are closely spaced, the conventional beamforming 
cannot resolve them and only one peak is formed for θ1 and θ2. 
The other peak is at θ3. Thus, the number of DOA sectors is less 
than the number of sources. Using (9), the estimated �̂ is about 
�̂ = [−11◦, 11◦] ∪[23◦, 38◦] which contains all the locations of the 
three DOAs. From Fig. 8, it is seen that the proposed method still 
works properly and achieves the best performance among all other 
algorithms.

We now consider a case when two sources are correlated, 
whereas the number of snapshots is fixed at N = 40 and SNR is 
fixed at −5 dB. In Fig. 9, the RMSE of the estimated DOA is plot-
ted as a function of the correlation coefficient ρ between the two 
sources. Here, the correlated source samples are generated from a 
first-order autoregressive process:

s2(i) = ρs1(i) +
√

1 − |ρ|2 · e1(i), i = 1, · · · , N (19)

where e1(i) is independent and identically distributed complex 
Gaussian noise with zero mean and variance σ 2

n . It can be seen 
that the performance of the proposed method is almost inde-
pendent of the correlation, whereas the performance of the PR 
root-MUSIC deteriorates as ρ increases. Compared to the CB-URM 
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Fig. 8. RMSE versus SNR. Three-source case: θ1 = −5◦ , θ2 = 5◦ and θ3 = 30◦ .

Fig. 9. RMSE versus correlation coefficient.

method, the proposed scheme achieves a considerable angle accu-
racy improvement.

4.3. Applicability of two-step reliability test

In the final example, we use the proposed TSRT to improve the 
performance of the ESPRIT [3], unitary ESPRIT [5] and root-MUSIC 
[19] methods. Here, the root-MUSIC is based on the conventional 
beamforming and it has been used by the PR root-MUSIC algorithm 
[16] to form the estimator bank. Hence, we also introduce the PR 
root-MUSIC for comparison. Since the ESPRIT and unitary ESPRIT 
algorithms have no signal roots, the DDS [17] cannot be applied. 
For the purpose of a fair comparison, we use the median to deter-
mine the final DOA estimates in all the investigated algorithms. We 
set the numbers of snapshots and PR runs as N = 60 and K = 10, 
respectively. Fig. 10 shows the RMSEs. At small SNRs, the TSRT 
based ESPRIT, unitary ESPRIT and root-MUSIC show a significant 
performance improvement compared to their original versions. It 
is worth noting that the PR unitary ESPRIT algorithm [15] does 
not provide the performance improvement compared to the uni-
tary ESPRIT approach in the whole SNR region. The PR root-MUSIC 
scheme [16] outperforms the root-MUSIC, but it is still inferior to 
the TSRT based one, especially at small SNRs.
Fig. 10. RMSE versus SNR. ESPRIT, unitary ESPRIT, root-MUSIC algorithms, and their 
respective TSRT and PR based versions are compared.

Fig. 11. RMSE versus number of PR runs.

To further demonstrate the advantages of the TSRT, we also 
study RMSE performance as a function of PR runs. Here, SNR is set 
to be −6 dB, the number of snapshots is N = 40 and K is varied 
from 1 to 70. The remaining parameters are the same as in Fig. 9. 
Fig. 10 shows the RMSEs of the TSRT and PR based ESPRIT, unitary 
ESPRIT and root-MUSIC algorithms as a function of K . Meanwhile, 
the RMSEs of the PR unitary ESPRIT [15] and PR root-MUSIC [16]
are also plotted in Fig. 11 for comparison. It is observed that with 
K becoming larger, the RMSEs of the TSRT based algorithms gradu-
ally decrease. However, the performance of PR unitary ESPRIT [15]
is independent of K . When K ≥ 60, the PR root-MUSIC [16] and 
the TSRT based schemes merge together. It is worth mentioning 
that to achieve a comparable RMSE performance of the TSRT at 
K = 12, the number of PR runs that the former needs is about 
K = 50. In this sense, compared to the existing methods, the TSRT 
needs a much smaller number of PR runs, which reduces the com-
putational burden.

5. Conclusion

A TSRT based URM algorithm for DOA estimation is developed 
in this paper. The proposed method is able to reduce the number 
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of PR runs and improve the threshold effect. Unlike the conven-
tional reliability test, we propose a TSRT technique in which the 
successful DOA estimates of a given DOA estimator can be retained 
separately and they will not be rejected even if there are DOA esti-
mates rejected by the test. Thus, it is possible to use fewer PR runs 
to collect sufficient successful DOA estimates that can be used to 
determine the final DOA estimates. It is worth mentioning that the 
TSRT can also be applied to other DOA estimation methods. Sim-
ulation results verify the effectiveness of the proposed algorithm. 
As a future work, the proposed algorithm will be extended to DOA 
estimation for audio signals in microphone array application.
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