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I. INTRODUCTION

Direction finding of signals impinging on an array is
an important research topic in a variety of areas such as
radar, sonar, mobile communications, and biomedical
imaging. Numerous approaches have been proposed for
high-resolution direction-of-arrival (DOA) estimation,
including extrema-searching [1], polynomial-rooting [2],
and matrix-shifting [3] techniques. In this paper, we
consider the third category, that is, the estimation of signal
parameters via rotational invariance techniques
(ESPRIT)-like methods [4]. As a matrix-shifting
approach, the ESPRIT algorithm is able to efficiently
utilize the shift-invariant structure of the signal subspace
and provides closed-form solution for DOA estimation.
Consequently, it has received considerable attention. The
ESPRIT-like algorithms are usually solved via least
squares (LS) or total least squares (TLS), which turns out
to be suboptimal due to the overlapping subarray
configurations. A method known as structured total least
norm (STLN) has been proposed for computing the
solution to an overdetermined linear system, i.e., Ax ≈ b,
with possible errors in both A and b [5, 6]. Thereby, the
STLN preserves the affine structure of A, such as Toeplitz
or Hankel structure. However, the STLN is not applicable
to ESPRIT-like algorithms because the shift-invariant
equations (SIEs) do not have the affine structure [7].
Owing to the highly structured property of the SIE, a
structured least squares (SLS) method [7], which uses the
same approximation as the STLN, namely, a second-order
term in the expansion of the residual matrix is neglected,
is preferable over the LS or TLS if overlapping subarray
configurations are
involved.

The ESPRIT-like algorithm was originally proposed
for the one-dimensional DOA estimation in azimuth only
and restricted to the range of [0, π] [8]. In order to resolve
a larger range of angles, planar antenna structures have to
be utilized, e.g., circular arrays [9], rectangular arrays, and
crossed arrays [10]. Such structures allow not only the
azimuth angle but also the elevation angle to be taken into
account. The ESPRIT algorithm has been developed for a
three-axis crossed array in [11, 12] for joint estimation of
the azimuth and elevation angles. As the crossed array can
provide a larger aperture, it offers better resolution for a
given number of elements than other multidimensional
uniform array geometries [11, 13].

To further enhance the performance of the DOA
estimators, besides the spatial structure of the antennas,
the temporal properties of the signals, such as the
noncircular (NC) property, can also be employed. The NC
signals, such as binary phase shift keying (BPSK), offset
quadrature phase shift keying (QPSK), pulse-amplitude
modulation (PAM), and amplitude shift keying (ASK)
modulated signals, have been widely used in many
modern communication systems. By using the NC
properties of the received signals, a number of improved
subspace-based DOA estimators have been proposed, such
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as the NC-MUSIC [14], NC-root-MUSIC [15],
NC-ESPRIT [16], and NC unitary ESPRIT [17, 18]. The
NC ESPRIT-like algorithms can double the array aperture
and reduce the estimation errors.

In this paper, by using the structure of the three-axis
crossed array along with the NC properties of the arriving
signals, we devise an SLS-based NC-ESPRIT
(SLS-NC-ESPRIT) for DOA estimation. Owing to the
highly structured property of the SIEs, the SLS method
can provide more accurate DOA estimates. For the
three-axis crossed array, the LS, TLS, and SLS methods
will break down when two or more arriving signals have
the same projection onto the x-, y-, or z-axis because they
cannot solve the rank-deficiency problem. As a result, an
additional constraint requiring the SIEs of the three linear
subarrays directed along the x-, y-, and z-axes to share the
same set of eigenvectors is included. Moreover, the
proposed SLS-NC-ESPRIT can provide better
performance than the SLS method for the three-axis
crossed array in [12] because the former is able to
efficiently exploit the NC properties of the signals, while
the latter cannot.

The rest of the paper is organized as follows. In
Section II, the data model is presented. In Section III, we
review the ESPRIT and NC-ESPRIT algorithms with
three-axis crossed array structure and devise the
SLS-NC-ESPRIT solution. In Section IV, simulation
results are provided for performance comparison. Finally,
Section V draws the conclusion.

The following notations are used throughout the paper.
Matrices and vectors are represented by bold uppercase
and bold lowercase symbols, respectively. Superscripts
(·)T, (·)H, (·)∗, and (·)† stand for transpose, conjugate
transpose, conjugate, and pseudo-inverse, respectively.
The symbols IM, 0M × K and �M denote the M × M
identity matrix, M × K zero matrix, and M × M
exchange matrix, respectively. The Kronecker product is
represented by ⊗, and vec{·} denotes the vectorization
operator that maps the m × n matrix into an mn × 1
column vector. The symbols E{·} and |·| stand for
mathematical expectation and absolute value,
respectively.

II. PROBLEM FORMULATION

Consider a three-axis crossed array as shown in Fig. 1.
It consists of three linear subarrays directed along the x-,
y-, and z-axes, with the origin being the common
geometric center. Assume that all antenna elements are
identical and isotropic, and that the interelement spacing δ

is equal on all three axes. Consider the three-axis crossed
array with M antennas receiving narrowband signals from
d far-field sources. Here, M = Mx + My + Mz, where
Mx, My, and Mz are the numbers of elements in the x-, y-,
and z-directed subarrays, respectively. The array
measurements are modeled as

x(t) = As(t) + n(t) (1)

Fig. 1. Three-axis crossed array.

where s(t) = [s1(t), · · · , sd (t)]T is the signal vector,
n(t) = [n1(t), · · · , nM (t)]T contains the additive sensor
noise, and A = [a(θ1, φ1), · · · , a(θd, φd )] is the steering
matrix, which consists of d array steering vectors
a(θi, φi), i = 1, · · · , d, with θ i and φi representing the
elevation and azimuth angles of the ith signal. Here, d is
known to the receiver or estimated by an information
theoretic criterion, such as the Akaike information
criterion (AIC) [20], minimum description length (MDL)
[21], or their computationally efficient variants [22,23].
The array steering vector is given as

a(θi, φi) =

⎡⎢⎢⎣
ax(θi, φi)

ay(θi, φi)

az(θi, φi)

⎤⎥⎥⎦ , i = 1, . . . , d, (2)

where

ax(θi, φi) =
[
e−j Mx−1

2 μxi , e−j Mx−3
2 μxi , · · · , ej Mx−1

2 μxi

]T
, (3)

ay(θi, φi) =
[
e−j

My−1
2 μyi , e−j

My−3
2 μyi , · · · , ej

My−1
2 μyi

]T
, (4)

az(θi, φi) =
[
e−j Mz−1

2 μzi , e−j Mz−3
2 μzi , · · · , ej Mz−1

2 μzi

]T
. (5)

Here,

μxi = 2π

λ0
δ cos(φi) sin(θi), (6)

μyi = 2π

λ0
δ sin(φi) sin(θi), (7)

μzi = 2π

λ0
δ cos(θi), (8)
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with λ0 denoting the wavelength. It is assumed that the
noise n(t) is a white Gaussian process with mean zero and
covariance σ 2

n IM . Moreover, it is uncorrelated with the
signal vector s(t).

Suppose that the signals are strictly NC. In other
words, the complex symbol amplitudes of signals lie
on a line in the I/Q diagram, which may correspond to
BPSK, offset QPSK, and PAM [18]. Consequently, the
source symbol snapshot vector can be decomposed
as [17]

s(t) = �so(t), (9)

where the diagonal matrix � = diag{ejϕ1, . . . , ejϕd }
contains the initial complex phase shift of each source,
and so(t) is the real-valued data vector.

III. PROPOSED ALGORITHM

A. Motivation

We briefly review the ESPRIT and NC-ESPRIT
algorithms [16] and extend them from the uniform
linear array (ULA) to the three-axis crossed array
case. We start by finding the ESPRIT solution for each of
the linear subarrays. Based on the assumption above, the
covariance matrix for the data vector x(t) can be
written as

Rx = E
{

x(t)xH (t)
} = ARs AH + σ 2

n IM, (10)

where σ 2
n is the noise power at each antenna, and

Rs = E
{

s(t)sH (t)
}
. (11)

By using the spectral theorem, Rx can be decomposed as

Rx = U�UH , (12)

where � = diag {λ1, . . . , λM}, with λ1 ≥ . . . ≥ λd ≥
λd+1 = . . . = λM = σ 2

n being the eigenvalues, and
U = [u1, . . . , uM], with ui, i = 1, . . . , M, being the
corresponding eigenvectors. It follows that Rx

= U s	sUH
s + σ 2

n UnUH
n with �s = diag{λ1, . . . , λd}, Us

= [u1, . . . , ud], and Un = [ud + 1, . . . , uM]. According to
(10), we get

ARs AH + σ 2
n IM = U s�sUH

s + σ 2
n UnUH

n . (13)

With the use of U sUH
s + UnUH

n = IM and (13), we
obtain

U s = ARs AH U s

[
�s − σ 2

n Id

]−1


= AT , (14)

where T = Rs AH U s[�s − σ 2
n Id ]−1 is a nonsingular

matrix. As a result, Us is called the signal subspace. The
relationship in (14) is utilized to derive the ESPRIT
solution given below.

The selection matrices with maximum overlap of the
subarrays for the ESPRIT are defined as

J ξ1 = [IMξ −1 0(Mξ −1)×1], (15)

J ξ2 = [0(Mξ −1)×1 IMξ −1], (16)

where ξ ∈{x, y, z}. Thus, the selection matrices of the
three-axis crossed array are given by

K xl = [ Jxl 0(Mx−1)×My
0(Mx−1)×Mz

], l = 1, 2, (17)

K yl = [0(My−1)×Mx
Jyl 0(My−1)×Mz

], l = 1, 2, (18)

K zl = [0(Mz−1)×Mx
0(Mz−1)×My

J zl], l = 1, 2. (19)

As each subarray is shift-invariant, we get

K ξ1 A�ξ = K ξ2 A, ξ ∈ {x, y, z}, (20)

Where �ξ = diag{ejuξ1, . . . , ejuξd } ∈ C
d×d . According to

(14), we obtain

K ξ1U sϒξ = K ξ2U s , (21)

where

ϒξ = T−1�ξ T . (22)

In order to take advantage of the benefits associated
with the NC sources, we apply widely linear processing
and define the augmented measurement data vector x(nc)(t)
according to [17, 18] as

x(nc)(t) =
[

x(t)

�M x∗(t)

]
∈ C

2M. (23)

Note that the exchange matrix �M used in [17, 18] to
facilitate the real-valued implementation of NC unitary
ESPRIT is not a requirement for the NC-ESPRIT here. We
define the augmented measurement matrix x(nc)(t) as (23)
to correspond with [17, 18]. Substituting (1) and (9) into
(23) yields

x(nc)(t) =
[

As(t)

�M A∗s∗(t)

]
+
[

n(t)

�M n∗(t)

]

=
[

A

�M A∗�∗�∗

]
s(t) +

[
n(t)

�M n∗(t)

]


= A(nc)s(t) + n(nc)(t), (24)
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K (nc)
x1 =

⎡⎣ Jx1 0(Mx−1)×My
0(Mx−1)×Mz

0(Mx−1)×Mz
0(Mx−1)×My

0(Mx−1)×Mx

0(Mx−1)×Mx
0(Mx−1)×My

0(Mx−1)×Mz
0(Mx−1)×Mz

0(Mx−1)×My
�Mx−1 Jx2�Mx

⎤⎦ , (25)

K (nc)
x2 =

[
Jx2 0(Mx−1)×My

0(Mx−1)×Mz
0(Mx−1)×Mz

0(Mx−1)×My
0(Mx−1)×Mx

0(Mx−1)×Mx
0(Mx−1)×My

0(Mx−1)×Mz
0(Mx−1)×Mz

0(Mx−1)×My
�Mx−1 Jx1�Mx

]
, (26)

K (nc)
y1 =

[
0(My−1)×Mx

Jy1 0(My−1)×Mz
0(My−1)×Mz

0(My−1)×My
0(My−1)×Mx

0(My−1)×Mx
0(My−1)×My

0(My−1)×Mz
0(My−1)×Mz

�My−1 Jy2�My
0(My−1)×Mz

]
, (27)

K (nc)
y2 =

[
0(My−1)×Mx

Jy2 0(My−1)×Mz
0(My−1)×Mz

0(My−1)×My
0(My−1)×Mx

0(My−1)×Mx
0(My−1)×My

0(My−1)×Mz
0(My−1)×Mz

�My−1 Jy1�My
0(My−1)×Mz

]
, (28)

K (nc)
z1 =

[
0(Mz−1)×Mx

0(Mz−1)×My
J z1 0(Mz−1)×Mz

0(Mz−1)×My
0(Mz−1)×Mx

0(Mz−1)×Mx
0(Mz−1)×My

0(Mz−1)×Mz
�Mz−1 J z2�Mz

0(Mz−1)×My
0(Mz−1)×Mx

]
, (29)

K (nc)
z2 =

[
0(Mz−1)×Mx

0(Mz−1)×My
J z2 0(Mz−1)×Mz

0(Mz−1)×My
0(Mz−1)×Mx

0(Mz−1)×Mx
0(Mz−1)×My

0(Mz−1)×Mz
�Mz−1 J z1�Mz

0(Mz−1)×My
0(Mz−1)×Mx

]
, (30)

where A(nc) can be taken as the extended array steering
matrix with a virtual doubling of the sensor elements, and
n(nc)(t) represents the extended noise vector. It should be
noted that the virtual doubling sensor elements improve
the estimation resolution and increase the number of
detectable sources.

Let X(nc) be a 2M × N complex data matrix composed
of N snapshots xnc(tn), where 1 ≤ n ≤ N. A number of NC
ESPRIT–like algorithms for ULA have been devised
[16–18]. However, exploiting the NC properties of the
signals for the three-axis crossed array has not yet been
studied in the literature. Based on the ESPRIT for a
three-axis crossed array [12], we extend the selection
matrices of the three-axis crossed array in (17) to (19) to
the NC cases, which are shown at the bottom of next
page. Note that the structure of the selection matrices is
related to the definition of the augmented sample
matrix X(nc).

As each subarray of the three-axis crossed array is
shift-invariant, according to [19], A(nc) also possesses the
shift invariance property

K (nc)
ξ1 A(nc)�ξ = K (nc)

ξ2 A(nc), (31)

where ξ ∈ {x, y, z}.
Based on the data model in (23), we get the estimate of

the signal subspace, i.e., Û
(nc)
s , by computing the d left

singular vectors of X(nc) associated with the d dominant

singular values. The A(nc) and Û
(nc)
s span approximately

the same column space, namely, Û
(nc)
s ≈ A(nc)T (nc), where

T (nc) ∈ C
d×d is a nonsingular matrix. Similar to the

ESPRIT, the SIEs in (21) for NC signals can be expressed
as

K (nc)
ξ1 Û

(nc)
s ϒξ = K (nc)

ξ2 Û
(nc)
s , ξ ∈ {x, y, z}. (32)

The conventional approach to solve (32) is based on

LS, i.e., ϒLS
ξ = (K (nc)

ξ1 Û
(nc)
s )†(K (nc)

ξ2 Û
(nc)
s ). However, the

LS method assumes that K (nc)
ξ1 Û

(nc)
s is known without

error, whereas K (nc)
ξ2 Û

(nc)
s is subject to error, which is

obviously not appropriate in practical applications. Unlike
the LS solution, the TLS can minimize the perturbations


Û
(nc)
s1 and 
Û

(nc)
s2 in K (nc)

ξ1 Û
(nc)
s and K (nc)

ξ2 Û
(nc)
s ,

respectively. Consequently, it is more accurate than the
LS. However, the TLS is appropriate only if the two
subarrays do not share any element. Instead, the SLS
method is more appropriate when the two subarrays of
each linear array directed along the x-, y-, and z-axes have
overlapping elements, since it considers the specific
relationship between subarrays. This thereby motivates us
to employ the SLS approach to solve the SIEs in (32) for
the NC signals in the next subsection, leading to the
considerably enhanced accuracy in joint estimation of
elevation and azimuth.
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B. Derivation

In this subsection, we employ the SLS technique to

solve (32). As Û
(nc)
s only spans the noise-corrupted signal

subspace, assuming that there exists a small perturbation


Û
(nc)
s in this signal subspace, an improved signal

subspace estimate can be expressed as

Ũ
(nc)
s = Û

(nc)
s + 
Û

(nc)
s . Let us define the residual matrix

as

Rξ (Ũ
(nc)
s , ϒξ ) = K (nc)

ξ1 Ũ
(nc)
s ϒξ − K (nc)

ξ2 Ũ
(nc)
s , ξ ∈ {x, y, z}.

(33)
The method therefore proceeds by minimizing the

Frobenius norm of Rξ (Ũ
(nc)
s , ϒξ ). Moreover, the

Frobenius norm of 
Û
(nc)
s should be kept as small as

possible. As a result, the improved estimates can be
obtained by solving the following minimization problem:

min

Û

(nc)
s ,ϒξ

∣∣∣∣∣∣
∣∣∣∣∣∣
⎡⎣ Rξ (Ũ

(nc)
s , ϒξ )

κ · 
Û
(nc)
s

⎤⎦∣∣∣∣∣∣
∣∣∣∣∣∣
F

, ξ ∈ {x, y, z}. (34)

Here, κ = √
(2(M − 3))/(α2M) is a tuning factor that

makes the minimization of 
Û
(nc)
s be independent of the

dimensions of Rξ (Ũ
(nc)
s , ϒξ ). From [7], we conclude that

if the value of α is larger than 1, the entries of 
Û
(nc)
s

should be larger than the entries of Rξ (Ũ
(nc)
s , ϒξ ) in each

step of the iterative procedure. Actually, as has been
pointed out in [7], the SLS algorithm is not sensitive to the

choice of α. Denote the (i, j) entries of Rξ (Ũ
(nc)
s , ϒξ ) and


Û
(nc)
s by rij and eij, respectively. The problem in (34) can

then be rewritten as

min

Û

(nc)
s ,ϒξ

d∑
j=1

(
α

2(M − 3)d

2(M−3)∑
i=1

|rij |2+ 1

2Md

2M∑
i=1

|eij |2
)
.

(35)
As the subarrays of the three-axis crossed array are

linear, the matrix K (nc)
ξ l Û

(nc)
s , ξ ∈ {x, y, z}, l = 1, 2, may

be rank deficient when two or more arriving signals have
the same projection onto the ξ -axis. As a result, the LS,
TLS, and SLS methods will provide incorrect results on
the particular ξ -axis. However, there is only one set of
solutions, since the resulting matrices ϒξ , ξ ∈{x, y, z}
share the same set of eigenvectors [11, 24]. A necessary
and sufficient condition for two matrices A and B to share
the same set of eigenvectors is that AB = BA [12]. Using
this property, the SLS method can be improved by
exploiting the relationship between the matrices ϒξ , ξ

∈{x, y, z}. Thus, we have

F1 = ϒxϒy − ϒyϒx = 0d×d, (36)

F2 = ϒyϒz − ϒzϒy = 0d×d, (37)

F3 = ϒzϒx − ϒxϒz = 0d×d . (38)

We can find that (36) to (38) force the matrices ϒξ , ξ

∈{x, y, z} to share the same set of eigenvectors, enabling

us to circumvent the rank-deficiency problem. As a result,
the estimation accuracy can be considerably improved.

Following the algorithm [7] that solves an equation
like (34) in an iterative procedure, an improved SLS
method for unitary ESPRIT is derived in [12]. Analogous
to the ESPRIT algorithm for a three-axis crossed array
[12], the SLS-NC-ESPRIT extends the signal model to the
augmented sample matrix case and updates the cost
function as well as the tuning factor for NC signals.
Moreover, an additional constraint for the NC signals is
employed to circumvent the rank-deficiency problem. As a
result, the SLS-NC-ESPRIT can provide much more
accurate elevation and azimuth estimates by jointly
minimizing the Frobenius norms of F1, F2, and F3 and
applying the improved SLS method to solve the SIEs of
the three-axis crossed array.

Let the residual matrices F1, F2, and F3 at the kth
iteration be

R(Ũ
(nc)
sk , ϒξk) = K (nc)

ξ1 Ũ
(nc)
sk ϒξ − K (nc)

ξ2 Ũ
(nc)
sk , (39)

F1k = ϒxkϒyk − ϒykϒxk, (40)

F2k = ϒykϒzk − ϒzkϒyk, (41)

F3k = ϒzkϒxk − ϒxkϒzk, (42)

where ξ ∈{x, y, z}. So the residual matrices F1, F2, and F3

at the (k + 1)th iteration can be written as

R
(

Ũ
(nc)
s(k+1), ϒξ (k+1)

)
= R

(
Ũ

(nc)
sk + 
Û

(nc)
s,k , ϒξk + 
ϒξk

)
≈ R
(

Ũ
(nc)
sk , ϒξk

)
+K (nc)

ξ1 Ũ
(nc)
sk 
ϒξk + K (nc)

ξ1 
Û
(nc)
sk ϒξk − K (nc)

ξ2 
Û
(nc)
s,k ,

(43)

F1(k+1) = (ϒxk + 
ϒxk)(ϒyk + 
ϒyk)

−(ϒyk + 
ϒyk)(ϒxk + 
ϒxk)

≈ F1k + ϒxk
ϒyk + 
ϒxkϒyk

−ϒyk
ϒxk − 
ϒykϒxk, (44)

F2(k+1) = (ϒyk + 
ϒyk)(ϒzk + 
ϒzk)

−(ϒzk + 
ϒzk)(ϒyk + 
ϒyk)

≈ F2k + ϒyk
ϒzk + 
ϒykϒzk

−ϒzk
ϒyk − 
ϒzkϒyk, (45)

F3(k+1) = (ϒzk + 
ϒzk)(ϒxk + 
ϒxk)

−(ϒxk + 
ϒxk)(ϒzk + 
ϒzk)

≈ F3k + ϒzk
ϒxk + 
ϒzkϒxk

−ϒxk
ϒzk − 
ϒxkϒzk. (46)

Note that the last approximations in (43) to (46) are
obtained by neglecting the second-order terms. Given the
matrices C1 ∈ C

c1×c2 , C2 ∈ C
c2×c3 , and C3 ∈ C

c3×c4 , we
obtain

vec{C1C2C3} = (CT
3 ⊗ C1

)
vec{C2}. (47)
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Applying vectorization to (43) to (46), we get

vec
{

R
(

Ũ
(nc)
s(k+1), ϒξ (k+1)

)}
≈ vec

{
R
(

Ũ
(nc)
sk , ϒξk

)}
+
[

Id ⊗
(

K (nc)
ξ1 Ũ

(nc)
sk

)]
vec
{

ϒξk

}
+
[
ϒT

ξk ⊗ K (nc)
ξ1 − Id ⊗ K (nc)

ξ2

]
vec
{

Û

(nc)
s,k

}
, (48)

vec
{

F1(k+1)
}

≈ vec {F1k} + [ϒT
yk ⊗ Id − Id ⊗ ϒyk

]
vec {
ϒxk}

+ [Id ⊗ ϒxk − ϒxk ⊗ Id ] vec
{

ϒyk

}
, (49)

vec
{

F2(k+1)
}

≈ vec {F2k} + [ϒT
zk ⊗ Id − Id ⊗ ϒzk

]
vec
{

ϒyk

}
+ [Id ⊗ ϒyk − ϒyk ⊗ Id

]
vec {
ϒzk} , (50)

vec
{

F3(k+1)
}

≈ vec {F3k} + [ϒT
xk ⊗ Id − Id ⊗ ϒxk

]
vec {
ϒzk}

+ [Id ⊗ ϒzk − ϒzk ⊗ Id ] vec {
ϒxk} . (51)

Meanwhile, let 
Ũ
(nc)
s,k


=∑k−1
i=1 
Û

(nc)
s,i be the signal

subspace change compared with the initial estimate Û
(nc)
s

at the kth iteration step. The improved Ũ
(nc)
sk is represented

as

Ũ
(nc)
sk = Û

(nc)
s + 
Ũ

(nc)
s,k . (52)

From (43) to (51), the SLS problem is formulated in
(53),{
ϒ̂x, ϒ̂y, ϒ̂z

} = arg min

ϒξk ,
Û

(nc)
s,k

×

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec
{

R(Ũ
(nc)
sk +
Û

(nc)
s,k , ϒxk)

}
vec
{

R(Ũ
(nc)
sk +
Û

(nc)
s,k , ϒyk)

}
vec
{

R(Ũ
(nc)
sk +
Û

(nc)
s,k , ϒzk)

}
vec {F1k}
vec {F2k}
vec {F3k}

κ̃ · vec
{

Ũ

(nc)
s,k

}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+Hk ·

⎡⎢⎢⎢⎢⎢⎣
vec {
ϒxk}
vec
{

ϒyk

}
vec {
ϒzk}

vec
{

Û (nc)

s,k

}

⎤⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
F

(53)

where

κ̃ =
√

2(M − 3) + 3d

α2M
(54)

provides a normalization that makes the minimization of

vec{
Û
(nc)
s } independent of the sizes of the other

matrices. Here, Hk is defined as (55). Minimizing the cost
function in (53), we obtain the optimal estimates of ϒx,
ϒy, and ϒz, i.e., ϒ̂x , ϒ̂y , and ϒ̂z. As a result, the optimal

Fig. 2. RMSE of spatial frequency estimates versus SNR for θ1 = θ2,
φ1 
= φ2, N = 300.

Fig. 3. RMSE of spatial frequency estimates versus SNR for θ1 = θ2,
φ1 
= φ2, N = 20.

Fig. 4. RMSE of spatial frequency estimates versus snapshot number
for θ1 = θ2, φ1 
= φ2.

estimates of spatial frequencies μxi, μyi, and μzi, where i =
1, . . . ,d, i.e., μ̂xi , μ̂yi , and μ̂zi , i = 1, . . . , d, are calculated
from ϒ̂x , ϒ̂y , and ϒ̂z with the aid of eigendecomposition.
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Hk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Id ⊗
(

K (nc)
x1 Ũ

(nc)
sk

)
02(My−1)d×d2 02(Mz−1)d×d2 ϒT

xk ⊗ K (nc)
x1 − Id ⊗ K (nc)

x2

02(Mx−1)d×d2 Id ⊗
(

K (nc)
y1 Ũ

(nc)
sk

)
02(Mz−1)d×d2 ϒT

yk ⊗ K (nc)
y1 − Id ⊗ K (nc)

y2

02(Mx−1)d×d2 02(My−1)d×d2 Id ⊗
(

K (nc)
z1 Ũ

(nc)
sk

)
ϒT

zk ⊗ K (nc)
z1 − Id ⊗ K (nc)

z2

ϒT
yk ⊗ Id − Id ⊗ ϒyk Id ⊗ ϒxk − ϒxk ⊗ Id 0d2×d2 0d2×2Md

0d2×d2 ϒT
zk ⊗ Id − Id ⊗ ϒzk Id ⊗ ϒyk − ϒyk ⊗ Id 0d2×2Md

Id ⊗ ϒzk − ϒzk ⊗ Id 0d2×d2 ϒT
xk ⊗ Id − Id ⊗ ϒxk 0d2×2Md

02Md×d2 02Md×d2 02Md×d2 κ̃ I2Md

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(55)

Note that at each step of the iterative procedure, by
reshaping the obtained vector, we can recover ϒξk and

Ũ
(nc)
sk as:

Ũ
(nc)
s(k+1) = Ũ

(nc)
sk + 
Û

(nc)
s,k (56)

and

ϒξ (k+1) = ϒξk + 
ϒξk, ξ ∈ {x, y, z}. (57)

The LS solution of (33) is chosen as the initial estimate
of ϒξ . Meanwhile, the initial basis of the signal subspace

is selected as Ũ
(nc)
s0 = Û

(nc)
s . The algorithm converges

provided that min{‖
ϒξk‖2
F , ‖
Û

(nc)
s,k ‖2

F } ≤ ε,

ξ ∈ {x, y, z}, where ξ is the tolerance.

REMARK This paper is only devoted to the derivation of
the joint estimation approach for the spatial frequencies
μxi, μyi, and μzi, with i = 1, . . . , d. However, the
procedure explained above gives an arbitrary ordering of
the solutions for the spatial frequencies μxi, μyi, and μzi on
each axis. Association of μξ i, ξ ∈ {x, y, z} to the same
signal has been well studied in the literature. For example,
an automatic pairing approach has been devised in [11] by
forming a matrix, which is able to provide the same set of
eigenvectors as ϒx, ϒy, and ϒz and unique eigenvalues
for arbitrary arrival angles. As a result, the constructed
matrix provides a unique ordering of the eigenvectors and
eigenvalues for ϒx, ϒy, and ϒz, and then the ordering of
the spatial frequencies is uniquely determined. Moreover,
an algorithm that achieves automatic pairing by
simultaneously decomposing several nonsymmetric
matrices is presented in [24]. Using (6) to (8), we can find
that the signal parameters to be estimated, i.e., θ i and φi, i
= 1, . . . , d, are uniquely determined by the spatial
frequencies μxi, μyi, and μzi. As a result, we only evaluate
the estimation accuracy of the spatial frequencies in
Section IV.

IV. SIMULATION RESULTS

In our simulations, we assume that there is a three-axis
crossed array consisting of M = 3m omnidirectional

sensors, and each subarray has m elements. The sensors
are aligned along the x-, y-, and z-axes, as illustrated in
Fig. 1. We evaluate the root mean square error (RMSE)
according to the following definition:

RMSEi =
√√√√ 1

Mc

Mc∑
p=1

∑
ξ∈{x,y,z}

(
μ̂

(p)
ξi − μξi

)2
, (58)

where Mc = 1000 is the number of independent trials, and
μ̂

(p)
ξi , ξ ∈ {x, y, z}, i = 1, . . . , d, are their estimated

frequencies of the ith signal obtained in the pth trial, while
μξ i, ξ ∈ {x, y, z} are the corresponding true values. In all
examples, we assume that there are two equipowered
BPSK signals, and their initial phases are 5◦ and 20◦. The
number of array elements is set as M = 30, and all
interelement spacings on the three subarrays are equal to
0.45λ0. For the improved SLS method, the tolerance is set
to be 10−6. For comparison, the empirical results of the
ESPRIT [3], SLS-ESPRIT [12], and NC-ESPRIT [18] are
included. Moreover, in order to investigate the effect of the
additional constraint on the SLS-ESPRIT and
SLS-NC-ESPRIT algorithms, the empirical results of the
SLS-ESPRIT and SLS-NC-ESPRIT methods without the
additional constraint are provided as well.

A. RMSE for θ1 = θ2, φ1 
= φ2

When θ1 = θ2, it follows from (8) that μz1 = μz2,
namely, the two signals have same projection onto the
z-axis. As a result, the equations in (32) for ξ = z may be
rank deficient, which will cause the ESPRIT, NC-ESPRIT,
SLS-based schemes without the additional constraint to
fail. Here, we assume the azimuths of the two BPSK
signals are 0◦ and 20◦, and their elevations are both 60◦.

Fig. 2 compares the estimation accuracy of various
approaches in terms of RMSE versus signal-to-noise ratio
(SNR) in dB, where the number of snapshots is N = 300. It
is indicated in Fig. 2 that the performances of the ESPRIT
and the SLS-ESPRIT without the additional constraint
deteriorate significantly even when the SNR is sufficiently
large. Moreover, the ESPRIT and SLS-ESPRIT have a
larger RMSE than the NC-based schemes because they do
not make full use of the NC properties of the signals. For
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the SLS-ESPRIT without the additional constraint, due to
the rank deficiencies occurring in the SIEs associated with
the z-axis of the array, it is inferior to the SLS-ESPRIT.
Although the SLS-NC-ESPRIT without the additional
constraint can provide more accurate DOA estimates, it
still cannot resolve the two sources. However, from Fig. 2,
we observe that the SLS-ESPRIT and SLS-NC-ESPRIT
are still able to resolve the spatial frequencies, since they
involve the additional constraint, which requires the SIEs
of the three subarrays directed along the x-, y-, and z-axes
to share the same set of eigenvectors. Moreover, as our
proposal exploits the NC properties of the signals, it
provides more accurate estimates than the SLS-ESPRIT.

In this example, we fix the number of snapshots at 20
and investigate the RMSE of the spatial frequency
estimates as a function of SNR. It is observed in Fig. 3 that
the proposed SLS-NC-ESPRIT still provides the smallest
RMSE among all the approaches. The ESPRIT and
SLS-ESPRIT without the additional constraint fail to
provide accurate spatial frequency estimates because they
cannot solve the rank-deficiency problem. Due to the fact
that the NC-ESPRIT and SLS-NC-ESPRIT without the
additional constraint make full use of the NC properties of
the signals, they can provide smaller RMSE but still
cannot resolve the two sources. Moreover, although the
SLS-ESPRIT can handle the rank-deficiency problem, it is
still slightly inferior to our proposed SLS-NC-ESPRIT.

The empirical results in Fig. 4 correspond to the
scenario where the SNR is fixed at SNR = −5 dB while N
varies from 50 to 190. It is observed that the ESPRIT
cannot handle the rank-deficiency problem and has a much
larger RMSE than the other methods. Although the
NC-ESPRIT can provide more accurate estimates than the
ESPRIT, as it exploits the NC properties of the signals, it
also suffers from the same problem as the ESPRIT.
Furthermore, the SLS-based schemes without the
additional constraint also have large errors due to the
influence of rank deficiency. However, we observe that the
rank-deficiency problem has little influence on the
SLS-based schemes with the additional constraint. As the
number of snapshots becomes larger, both the
SLS-ESPRIT and SLS-NC-ESPRIT considerably improve
in performance, but the former is still inferior to the latter.

B. RMSE for θ1 
= θ2, φ1 
= φ2

In this example, we study the RMSE as a function of
SNR. The number of snapshots is N = 300. Assume that
the two BPSK signals arrive from −4◦ and 4◦ in azimuth
and from 18◦ and 28◦ in elevation. From Fig. 5, we
observe that the proposed SLS-NC-ESPRIT provides the
smallest RMSE among all the algorithms. Moreover, our
proposed method significantly outperforms the other
approaches in accuracy, especially when the SNR is less
than −5 dB. Although there is no rank deficiency in this
example, the SLS-ESPRIT and SLS-NC-ESPRIT still can
provide better performance than the SLS-based schemes
without the additional constraint because the former

Fig. 5. RMSE of spatial frequency estimates versus SNR for θ1 
= θ2,
φ1 
= φ2, N = 300.

Fig. 6. RMSE of spatial frequency estimates versus SNR for θ1 
= θ2,
φ1 
= φ2, N = 20.

exploit the fact that the matrices ϒξ , ξ ∈ {x, y, z} share the
same set of eigenvectors.

Fig. 6 shows the RMSEs of the investigated methods
versus SNR at N = 20. All the algorithms can resolve the
two sources because there is no rank deficiency. We can
see that the proposed SLS-NC-ESPRIT still surpasses the
other approaches even when the number of snapshots is
small. The SLS-ESPRIT performs slightly worse than the
SLS-NC-ESPRIT, because it does not exploit the NC
properties of the signals. Furthermore, the
SLS-NC-ESPRIT and SLS-ESPRIT can provide more
accurate DOA estimates than the SLS-based schemes
without the additional constraint. As no additional
information is employed in the ESPRIT, it provides the
largest RMSE among all the approaches.

The empirical results of these algorithms versus the
number of snapshots for SNR = −5 dB are shown in
Fig. 7. It is seen that the SLS-NC-ESPRIT and
SLS-ESPRIT perform much better than the other methods.
Since the proposed approach is able to utilize the NC
properties of signals, it is superior to the SLS-ESPRIT in
accuracy. Moreover, it is observed from Fig. 7 that the
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Fig. 7. RMSE of spatial frequency estimates versus snapshot number
for θ1 
= θ2, φ1 
= φ2.

Fig. 8. RMSE of spatial frequency estimates versus azimuth separation.

NC-ESPRIT and SLS-NC-ESPRIT, which exploit the NC
properties of the signals, achieve a performance
improvement compared with their counterparts, i.e.,
ESPRIT and SLS-ESPRIT. As the additional constraint
can guarantee much more accurate spatial frequency
estimates, the SLS-ESPRIT and SLS-NC-ESPRIT provide
smaller RMSE values than the SLS-based schemes
without the additional constraint.

C. RMSE versus Azimuth or Elevation Separation

We now examine the spatial frequency estimation
errors as a function of azimuth separation, results of which
are plotted in Fig. 8. The number of snapshots and SNR
are 300 and −5 dB, respectively. We fix the DOAs of the
first target at (2◦, 18◦) and set the DOAs of the second
target as (2◦ + 
φ, 28◦), where 
φ varies from 2◦ to 10◦.
It is indicated in Fig. 8 that our proposal outperforms the
other algorithms. We can also see that the LS-based
algorithms, that is, the ESPRIT and NC-ESPRIT, are
considerably inferior to the proposed method. Moreover,
the SLS-based schemes without the additional constraint
can provide more accurate DOA estimates than the

Fig. 9. RMSE of spatial frequency estimates versus elevation
separation.

LS-based schemes. That is to say, the SLS-ESPRIT
without the additional constraint is superior to the
ESPRIT, and the SLS-NC-ESPRIT without the additional
constraint outperforms the NC-ESPRIT. We can also
observe that the SLS-ESPRIT and SLS-NC-ESPRIT,
which exploit the fact that the matrices ϒξ , ξ ∈ {x, y, z}
share the same set of eigenvectors, have much smaller
RMSE values than the SLS-based schemes without the
additional constraint. Furthermore, the performance of the
proposed SLS-NC-ESPRIT is not sensitive to the azimuth
separation. It is well known that the DOA estimation
algorithm will obtain much more accurate estimates when∑
ξ∈{x,y,z}

|μξ1 − μξ2| becomes larger. From (6) and (7), we

can conclude that both the spatial frequencies projected on
the x- and y-axes are affected by the azimuth φ. In this
example, when 
φ increases from 2◦ to 10◦, according to
(6) to (8), |μx1 – μx2| is an increasing function, while |μy1

–μy2| is a decreasing function. Consequently,∑
ξ∈{x,y,z}

|μξ1 − μξ2|increases a little bit, and the azimuth

separation may have little influence on the RMSE of the
proposed approach. Moreover, as a SLS-based scheme, the
SLS-ESPRIT has a significant performance improvement
compared with the ESPRIT, and it is also independent of
azimuth separation. Nevertheless, it is still inferior to the
proposed solution.

Fig. 9 shows the spatial frequency estimate errors as a
function of elevation separation. The number of snapshots
and SNR are set as 300 and −5 dB, respectively. We fix
the DOAs of the first target at (–4◦, 18◦) and set the DOAs
of the second target as (4◦, 18◦ + 
θ). Here, 
θ increases
from 2◦ to 10◦. It is indicated that when the separation of
elevation angles is less than 5◦, the proposed
SLS-NC-ESPRIT yields a significant performance
improvement over the other methods. As the ESPRIT and
NC-ESPRIT ignore the overlapping subarray
configurations, they can only provide inferior estimation
accuracy. Moreover, the SLS-based schemes are superior
to the LS-based schemes, that is, the ESPRIT and
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NC-ESPRIT. However, the SLS-ESPRIT and
SLS-NC-ESPRIT outperform the SLS-based schemes
without the additional constraint because the former fully
exploit the relationship of the matrices ϒξ , ξ ∈ {x, y, z}.
Although the SLS-ESPRIT is able to efficiently utilize the
overlapping structure between the subarrays, it does not
employ the NC properties of the signals. This is why it is
inferior to the proposed method, especially for 
θ < 5◦.

V. CONCLUSION

An improved SLS-NC-ESPRIT method has been
developed for accurate DOA estimation of NC signals with
a three-axis crossed array. The proposed scheme exploits
the NC properties of the signals and accounts for the errors
in the signal subspace by using an iterative minimization
procedure to optimize the signal subspace estimate. In
order to circumvent the rank-deficiency problem, an
additional constraint has been used in solving the
invariance equations of the three linear subarrays directed
along the x-, y-, and z-axes. Consequently, the devised
method is able to provide considerable improvement in
estimation accuracy. It is shown that the proposed method
is superior to the state-of-the-art algorithms in terms of
estimation performance, especially at low SNR conditions.
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