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It is recently shown that algorithms derived from random matrix theory (RMT) can provide superior
performance for spectrum sensing, which corresponds to the task of detecting the presence of primary
users in cognitive radio. The essence of the RMT-based methods is to utilize the distribution of
extremal eigenvalues of the received signal sample covariance matrix (SCM), namely, the Tracy–Widom
(TW) distribution. Although the TW distribution is quite useful in spectrum sensing, computationally
demanding numerical evaluation is required because it does not have an explicit closed-form expression.
In this paper, we devise two novel volume-based detectors by exploiting the determinant of the SCM or
volume to distinguish between the signal-presence and signal-absence cases. With the use of RMT, we
accurately produce the theoretical decision threshold for one of the detectors under the Gaussian noise
assumption. Simulation results are included to illustrate the effectiveness of the volume-based detectors.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

It has been revealed in [1] that the current policies of fixed
spectrum allocation do not fully utilize the available spectrum.
Cognitive radio (CR) [2–12], whose main idea is to sense the spec-
trum over a wide range of frequency bands and exploit the tempo-
rally unoccupied bands for opportunistic wireless transmissions, is
a promising paradigm to increase the spectrum usage efficiency. In
a CR network, when the spectrum resources of a primary user (PU)
are not occupied, a secondary user (SU) is allowed to use them.
That is to say, the SU needs to reliably detect the presence of the
PU. This is referred to as spectrum sensing, which can be cast as
a binary hypothesis testing problem and is particularly challenging
for small sample size and/or low signal-to-noise ratio (SNR) condi-
tions.

For the scenario of signal-absence, the observed data only con-
sist of noise and are usually assumed to be independent and
identically distributed (IID). It is apparent that the energy and
correlation structure of the observations differ when the PU sig-

✩ The work described in this paper was in part supported by a grant from the
NSFC/RGC Joint Research Scheme sponsored by the Research Grants Council of Hong
Kong and the National Natural Science Foundation of China (Project No.: N_CityU
104/11, 61110229/61161160564), by the National Natural Science under Grants
61222106 and 61171187 and by the Shenzhen Kongqie talent program under Grant
KQC201109020061A.

* Corresponding author.
E-mail addresses: dr.lei.huang@ieee.org (L. Huang), hcso@ee.cityu.edu.hk

(H.C. So), alextoqc@gmail.com (C. Qian).
http://dx.doi.org/10.1016/j.dsp.2014.02.003
1051-2004/© 2014 Elsevier Inc. All rights reserved.
nal is present. As a result, spectrum sensing can be achieved
by making use of these dissimilarities. When the noise power is
known, the energy detector (ED) [13,14] has been shown to be
optimal for the IID PU signals. However, the noise power infor-
mation is usually unavailable in practice and thus its estimate is
used instead [15–17]. This can dramatically degrade the detec-
tion performance of the ED approach because it is quite sensitive
to the noise uncertainty. As a matter of fact, the eigenvalues of
the received signal sample covariance matrix (SCM) in the signal-
presence situation are more spread out than those in the noise-
only case, which corresponds to a scaled identity matrix in the
asymptotic sense. The spread-out eigen-spectrum results from the
correlation structure inherent in the covariance matrix. As a result,
a number of eigenvalue-based detectors which exploit the corre-
lation structure for spectrum sensing have been proposed in the
literature [18–25]. Derived in the framework of generalized like-
lihood ratio test (GLRT), the arithmetic-to-geometric mean (AGM)
method [18] is able to reliably identify the correlated signals em-
bedded in the IID noise. However, the AGM algorithm has its root
in the maximum likelihood (ML) theory which turns out to be inef-
ficient when the temporal and spatial dimensions are small, that is,
the theoretical decision threshold cannot be accurately determined.
On the other hand, the maximum-to-minimum eigenvalue (MME)
approach [19] is heuristically developed to test if the SCM corre-
sponds to an identity matrix or its correlated alternative with the
use of its maximum and minimum eigenvalues. Since not all eigen-
values are utilized, its detection performance is highly sensitive
to weak correlated signals and/or small sample sizes. Moreover,
computation of the theoretical threshold for the MME algorithm
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Fig. 1. Volume comparison for uncorrelated, correlated and coherent observations.
relies on the distribution of the maximum and minimum eigenval-
ues in the framework of random matrix theory (RMT), namely, the
Tracy–Widom (TW) distribution [26]. However, there is no explicit
closed-form expression for the TW distribution, indicating that an
additional overhead of numerical evaluation is required. For the
situation where there is only a single primary signal, an accu-
rate variant of the GLRT has been devised for spectrum sensing
in [24], which is equivalent to the signal-to-noise (mean) eigen-
value (SNE) method [21]. As discussed in [27,30], nevertheless, the
number of primary signals in the sensed channel can be more than
one. Under such a condition, the performance of the SNE method
cannot be guaranteed. In practice, the SU receivers are usually
uncalibrated, making the noises at different antennas to be non-
uniform. To handle the non-uniform noise, some robust sensing
approaches have been proposed, such as the GLRT test [28], inde-
pendence test [29], Hadamard ratio test [27,30] and locally most
powerful invariant test (LMPIT) [31]. In this work, a new philos-
ophy for spectrum sensing is devised to accurately and robustly
detect the PUs in a computationally attractive manner. The un-
derlying idea is that the determinant of SCM or volume differs
dramatically between the signal-absence and signal-presence sit-
uations.

The rest of the paper is organized as follows. The problem
formulation of spectrum sensing is presented in Section 2. In Sec-
tion 3, prior to deriving the volume-based detectors, the motiva-
tion is provided via geometric interpretation. Then two volume-
based detectors, denoted by VD1 and VD2, are developed for spec-
trum sensing. With the use of RMT, the theoretical decision thresh-
old of the VD2 is accurately determined and no numerical proce-
dure is involved. Simulation results are included in Section 4 to
evaluate the performance of the proposed detectors by comparing
with the ED, AGM, MME, Hadamard ratio and SNE methods. Fi-
nally, conclusions are drawn in Section 5.

2. Problem formulation

Consider a multipath fading channel model and assume there
are 1 PU and (d − 1) interference users with d � 1, and each of
them is equipped with a single antenna in a CR network. To sim-
plify the following presentation, the interference users are now
counted as PUs because they occupy the same channel, that is,
there are d PUs. To find a temporally unoccupied channel, a SU re-
ceiver with m antennas needs to monitor this channel. Denote the
signal-absence and signal-presence hypotheses by H0 and H1, re-
spectively. The output observations of the SU, y(k) (k = 1, . . . ,n),
under the binary hypotheses can be written as

y(k) =
{

w(k), H0
H s(k) + w(k), H1

(1)

where n is the number of samples, H ∈R
m×d represents the fading

channels between the PUs and SU, and
y(k) = [
x1(k), . . . , xm(k)

]T
(2)

s(k) = [
s1(k), . . . , sd(k)

]T
(3)

w(k) = [
w1(k), . . . , wm(k)

]T
(4)

stand for the observation, signal and noise vectors, respectively,
with (·)T being the transpose operator. Unless stated otherwise,
the channels, primary signals and noise are considered to be real-
valued1 throughout this paper. We assume that the noises are sta-
tistically independent and satisfy wi(k) ∼ N (0, σ 2

wi
) (i = 1, . . . ,m)

where σ 2
wi

is the unknown noise variance, ∼ represents “dis-
tributed as” and N (μ,Σ) denotes the Gaussian distribution with
mean μ and variance Σ . If σ 2

wi
= σ 2

w for i = 1, . . . ,m, the noise
becomes IID (uniform); otherwise, it is the non-uniform noise due
to the uncalibrated receiver [28,32]. Meanwhile, suppose that si(k)

(i = 1, . . . ,d) is a random process with mean zero and unknown
variance σ 2

si
, which is independent of the noise. Note that the pri-

mary signal vector s(k) is unnecessarily Gaussian distributed. In
order to exploit the correlation structure inherent in the observa-
tions, we employ the covariance matrix of y(k), given as

R = E
[

y(k)yT (k)
]

(5)

where E[·] is the expectation operator.

3. Volume-based detector for spectrum sensing

3.1. Geometric interpretation

The determinant of R in fact is the hyper-volume of the ge-
ometry determined by the row vectors of R . As an example, let
us consider the scenario of three receiving antennas where the
observed data with zero mean and unity variance may be inde-
pendent, correlated or coherent. This means that the correspond-
ing covariance matrices are the 3 × 3 identity matrix, full-rank
non-identity matrix and rank-one arbitrary matrix. The geome-
tries, namely, cube, parallelepiped and line, formed by the row
vectors of the matrices are depicted in Fig. 1, where all edges of
the geometries are assumed to be unity such that ‖R(i, :)‖ = 1
with R(i, :) being the i-th row of R and ‖ · ‖ being the Euclidean
norm. Here, the volumes of the cube, parallelepiped and line, are
denoted by v1, v2 and v3, respectively. The cube corresponds to
the case of signal-absence whereas the other two geometries are
referring to the cases of signal-presence. For the signal-absence sit-
uation, the covariance matrix is a 3×3 identity matrix, i.e., R = I 3,
whose rows determine the coordinates of the points b, f and d
in Fig. 1(a), that is, (xb, yb, zb) = (1,0,0), (x f , y f , z f ) = (0,1,0),
(xd, yd, zd) = (0,0,1). Consequently, we obtain v1 = 1. For the

1 The proposed methods can be readily applied to the complex-valued case by
transforming the complex observation to its real counterpart, see [33] for example.
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signal-presence scenarios, however, the structure of diagonal ma-
trix is destroyed, leading to significant volume reduction, as in-
dicated in Fig. 1(b) and (c). Consequently, the volume is able to
differentiate the PUs from the background noise, motivating us to
develop a new methodology for accurate spectrum sensing.

3.2. Derivation

Let us begin with the case of signal-absence. In this case, the
elements of y(k), that is, yi(k), k = 1, . . . ,n, i = 1, . . . ,m, are the
independent observations. To exploit the correlation structure for
spectrum sensing in practice, we compute the SCM rather than the
population covariance matrix R , which is given by

S = 1

n

n∑
k=1

y(k)yT (k). (6)

Meanwhile, the edge lengths associated with the row vectors of
the SCM are calculated as δi = ‖S(i, :)‖ (i = 1, . . . ,m). By setting
D = diag(δ1, . . . , δm), we are able to obtain the volume of the ge-
ometry with unity edge, that is, det[D−1 S]. Taking the logarithm,
we have

ξ1 � log det
[

D−1 S
]
. (7)

For the scenario of signal-absence, D−1 S asymptotically ap-
proaches the identity matrix as the number of samples tends to
infinity, leading to the volume of one. For the situation of signal-
presence, however, the correlation between the rows of D−1 S
results in considerable reduction of volume, providing a good in-
dication for the primary signals. Therefore, compared with a pre-
determined threshold γ1, the statistic ξ1 is able to yield correct
detection of the PUs. That is

ξ1

H0
≷
H1

γ1. (8)

However, it is very hard to determine the theoretical threshold
for ξ1 as the distribution of det[D−1 S] is unknown. To alleviate the
difficulty, we assume that the noise is IID and derive an equivalent
statistic. It is easy to obtain

log det
[
nD−1 S

] = log det

[
σ̂ 2

w D−1 × σ 2
w

σ̂ 2
w

× nS

σ 2
w

]

= log det

[
nS

σ 2
w

]
− log det

[
D

σ̂ 2
w

]

− m log

(
σ̂ 2

w

σ 2
w

)
(9)

where σ̂ 2
w is the estimated noise variance calculated by σ̂ 2

w =
var(Y (:)) where Y (:) results from the vectorization of Y �
[y(1), . . . , y(n)]. Consequently, we get

ξ2 � log det

[
nS

σ 2
w

]

= log det
[
nD−1 S

] + log det

[
D

σ̂ 2
w

]
+ m log

(
σ̂ 2

w

σ 2
w

)
. (10)

It should be pointed out that the noise variance can be accurately
estimated by σ̂ 2

w = var(Y (:)) for the noise-only hypothesis H0, en-
abling us to accurately determine the threshold for ξ2 provided
that the last term on the right hand side (RHS) of (10) can be
fixed. For the signal-presence hypothesis H1, however, the noise
variance cannot be correctly estimated, making ξ2|H1 to have a
different behavior from ξ2|H0 and thereby enabling us to correctly
detect the presence of the primary signals. Note that the last term
on the RHS of (10) cannot be calculated from y(k) as it requires
the true noise variance σ 2

w . To circumvent this problem, we derive
an estimate to approximate it. To this end, setting

b̂ = m log

(
σ̂ 2

w

σ 2
w

)
(11)

and noticing that the noise variance can be accurately calculated
from the mn × 1 observations Y (:) in the noise-only case, we uti-
lize E[b̂] to approximate b̂, or

E[b̂] ≈ b̂. (12)

This approximation is valid because b̂ is much smaller than the
other two terms in (10). On the other hand, it follows from [34]
that

σ̂ 2
w

σ 2
w
� 1

mn
u ∼ 1

mn
χ2(mn) (13)

where u ∼ χ2(mn) with χ2(mn) being the chi-squared distribution
with mn degrees of freedom. Substituting (13) into (11) and taking
the expectation yield

E[b̂] = mE
[
log

(
σ̂ 2

w/σ 2
w

)] = m

(
log

1

mn
+E[log u]

)
. (14)

To proceed, we need the following lemma [35]

Lemma 1. If u ∼ χ2( J ), then

E[log u] = log( J ) − 1

J
− 1

3 J 2
+ 2

15 J 4
+O

(
J−6). (15)

Proof. The proof of Lemma 1 is given in [35]. �
Consequently, substituting (15) into (14) gives

E[b̂] = −m

(
1

mn
+ 1

3(mn)2
− 2

15(mn)4
−O

(
(mn)−6))

≈ −m

(
1

mn
+ 1

3(mn)2
− 2

15(mn)4

)
� b. (16)

It follows from (12) and (16) that b̂ can be approximated by b. As
a result, the test statistic ξ2 in (10) can be reexpressed as

ξ2 ≈ log det
[
nD−1 S

] + log det

[
D

σ̂ 2
w

]
+ b. (17)

It should be pointed out that, although ξ2 relies on the estimated
noise variance σ̂ 2

w but is insensitive to the uncertainty in the latter
because the first term on the RHS is much larger than the other
two terms. This can also be verified by the simulation results in
Section 4. For the case of signal-presence, however, the statistic
variable must have a different behavior due to the fact that the
volumes in both hypotheses are different. As a result, for a given
threshold γ2, the decision problem can be stated as

ξ2

H0
≷
H1

γ2. (18)

The proposed volume-based algorithms for spectrum sensing,
denoted by VD1 and VD2 corresponding to the test statistics ξ1
and ξ2, are summarized in Tables 1 and 2, respectively. The thresh-
old of the VD1 is determined by Monte Carlo simulation while that
of the VD2 can be obtained by either Monte Carlo simulation or
asymptotically theoretical calculation which will be elaborated in
the next subsection.
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Table 1
Summary of VD1.

Step 1: Compute the SCM by S = (1/n)Y Y T with Y � [y(1), . . . , y(n)] and
their edges by δi = ‖S(i, :)‖ for i = 1, . . . ,m.

Step 2: Form the test statistic as ξ1 = log det(D−1 S) with
D = diag(δ1, . . . , δm).

Step 3: Compare ξ1 with the predetermined threshold γ1. If ξ1 < γ1, the
primary signals are present; otherwise, the signals do not exist.

Table 2
Summary of VD2.

Step 1: Calculate the noise variance σ̂ 2
w from the observations

Y � [y(1), . . . , y(n)], i.e., σ̂ 2
w = var(Y (:)).

Step 2: Compute the SCM via S = (1/n)Y Y T and their edges by
δi = ‖S(i, :)‖ for i = 1, . . . ,m.

Step 3: Calculate b̂ via (16) and form D = diag(δ1, . . . , δm).
Step 4: Establish the test statistic of (17) and compare it with the

predetermined threshold γ2. If ξ2 < γ2, the primary signals are
present; otherwise, the signals do not exist.

3.3. Asymptotic theoretical threshold for VD2

If the probability density functions (PDFs) of ξ2 under hypothe-
ses H0 and H1, denoted as f0(t) and f1(t), are known, it follows
from (18) that the false alarm probability (P fa) and detection prob-
ability (Pd) can be calculated as

P fa = Prob(ξ2 < γ2 | H0) =
γ2∫

−∞
f0(t)dt (19)

Pd = Prob(ξ2 < γ2 | H1) =
γ2∫

−∞
f1(t)dt. (20)

As a result, the threshold γ2 may be derived from the P fa or Pd
provided that f0(t) or f1(t) is given. Usually, it is quite hard to
determine f1(t) as the statistic ξ2 relies on the correlation of the
received signals, which in fact varies under different environments.
On the contrary, it is easy to determine f0(t) by means of the
following theorem due to Jonsson [36].

Theorem 1. Let the observation data yi(k), i = 1, . . . ,m, k = 1, . . . ,n,
be independent normal variables with zero mean and unity variance. If
m,n → ∞ and m/n → c ∈ (0,1) with c being a fixed number, then the
test statistic ξ2 is Gaussian distributed, that is,

ξ2 = log det

[
nS

σ 2
w

]
∼ N

(
μξ ,σ

2
ξ

)
(21)

where S is the SCM given in (6), σ 2
ξ = −2 log(1 − c) and μξ = log(n −

1)m with (n − 1)m = (n − 1)(n − 2) · · · (n − m).

Proof. The proof of Theorem 1 is provided in [36]. �
As ξ2 ∼ N (μξ ,σ

2
ξ ) under the noise-only environment, it fol-

lows from (19) that

P fa = 1 −
∞∫

γ2−μξ
σξ

g(t)dt = 1 − Q

(
γ2 − μξ

σξ

)
(22)

where Q (x) = ∫ ∞
x g(t)dt with g(t) = 1/

√
2π exp(−t2/2). Thus, for

a given false alarm level ε = P fa, the decision threshold γ2 can be
determined as

γ2 = σξ Q −1(1 − ε) + μξ (23)
Table 3
Expression for theoretical threshold.

Method Test Statistic Threshold (γ )

AGM n log[ (1/m)
∑m

i=1 
i

(
∏m

i=1 
i )
1/m ]m [18] 2�̄−1(1 − ε, (m2 + m)/2 − 1)

MME 
1/
m [19] (
√

n+√
m)2

(
√

n−√
m)2 × (1 + (

√
n+√

m)−2/3

(mn)1/6 T −1
2 (1 − ε))

SNE 
1
1

m−2

∑m
i=2 
i

[24] (1+√
m/n)2

m−1 + (
√

m+√
n)4/3

n(m−1)(
√

mn)1/3 T −1
2 (1 − ε)

ED(σ 2
w ) tr[R̂]/σ 2

w [38] 2�̄−1(1 − ε,mn)

ED(σ̂ 2
w ) tr[R̂]/σ̂ 2

w [38] F −1(1 − ε,mn, L)

where Q −1(x) is the inverse function of Q (x). As suggested by Bai
and Silverstein [37], it is reasonable to replace c = limm,n→∞ m/n
by m/n in the calculation of γ2.

4. Simulation results

4.1. Accuracy of theoretical decision threshold

Let us first evaluate the accuracy of the theoretical decision
thresholds. Table 3 gives the formulae for computing the theoreti-
cal thresholds of the AGM [18], MME [19], SNE [24], ED(σ 2

w) [13]
and ED(σ̂ 2

w) [38] methods, where the ED(σ 2
w) and ED(σ̂ 2

w) stand
for the ED methods using the true and estimated noise vari-
ances, respectively. Meanwhile, the test statistics associated with
the methods are provided as well. Herein, �̄−1(·) is the inverse of
the incomplete gamma function evaluated by the MATLAB built-in
function gammaincinv(·, ·), T −1

1 (·) is the inverse of the cumu-
lative distribution function (CDF) of the TW distribution of order
one2 [26] and F −1(·, ·, ·) is the inverse of the CDF of the F distri-
bution [40]. Since a number of the state-of-the-art methods have
been considered, some classical detectors, such as Roy’s largest
root test and Wilks’ likelihood ratio test [41], are not included.

To accurately determine the simulated threshold, we have car-
ried out 50,000 independent Monte Carlo trials in the absence of
PUs and select the decision thresholds for the investigated meth-
ods according to the same given false alarm level. The numerical
results are tabulated in Table 4 for m = 6 and n = 12, where the
relative error is calculated as Error � (|γthe − γsim|)/γsim × 100%
with γthe and γsim being the theoretical and simulated thresholds,
respectively. The noise is the IID Gaussian process with zero mean
and unknown variance σ 2

w . Furthermore, we assume that there are
L signal-free samples available for the noise variance estimation,
enabling the ED(σ̂ 2

w ) method to work properly. It is seen that the
error of the VD2 method is more close to that of the ED(σ 2

w) al-
gorithm than other algorithms. In fact, the ED(σ 2

w) method cannot
be employed for spectrum sensing as the true noise variance is
unknown to the receiver in practice. Therefore, it is used herein
as a benchmark. Table 4 indicates that the theoretical threshold of
the ED(σ̂ 2

w) can be accurately determined by the F distribution,
which is also pointed out in [38,39]. Table 5 illustrates the accu-
racy of the studied methods in theoretical threshold computation
for n = 100. We observe from Table 5 that, in such a large sample
situation, the VD2 method yields the similar accuracy as the AGM
detector, but is still superior to the MME and SNE schemes. It is
easy to interpret this result. Although the theoretical thresholds of
the MME and SNE approaches are determined in the framework
of RMT, the former roughly replaces the smallest sample eigen-
value 
m with its limit σ 2

w(1 −√
m/n)2 to determine its theoretical

threshold, thereby introducing uncertainty whereas the latter re-

2 The table for calculating the CDF of the TW distribution is available at http://
math.arizona.edu/~momar/research.htm. Note that a more accurate threshold calcu-
lation for the MME method is provided in [20] but of no closed-form expression for
the general case and thereby ignored here.

http://math.arizona.edu/~momar/research.htm
http://math.arizona.edu/~momar/research.htm
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Table 4
Threshold comparison between theoretical calculation and numerical simulation for various methods with parameter setting: m = 6, n = 12 and L = 12.

Algorithm VD2 AGM MME SNE ED(σ 2
w ) ED(σ̂ 2

w ) P fa

Theoretical γ 9.0763 45.3147 50.6249 0.6701 1.5949 5.7064 10−3

Simulated γ 9.3759 57.7958 130.0793 1.3088 1.5889 5.4770 10−3

Errors (%) 3.1947 21.5952 61.0815 48.7962 0.3784 4.1872 10−3

Theoretical γ 9.9758 37.5662 44.2586 0.6694 1.4280 3.5071 10−2

Simulated γ 10.3467 47.8124 66.9504 1.0616 1.4273 3.3478 10−2

Errors (%) 3.5853 21.4299 33.8935 36.9498 0.0494 4.7565 10−2

Theoretical γ 11.2059 28.4120 36.2624 0.6614 1.2187 1.9507 10−1

Simulated γ 11.4633 35.8901 29.8481 0.8069 1.2181 1.8662 10−1

Errors (%) 2.2451 20.8362 21.4900 18.0315 0.0428 4.5291 10−1

Table 5
Threshold comparison between theoretical calculation and numerical simulation for various methods with parameter setting: m = 6, n = 100 and L = 100.

Algorithm VD2 AGM MME SNE ED(σ 2
w ) ED(σ̂ 2

w ) P fa

Theoretical γ 26.3292 45.3147 3.2885 0.3298 1.1880 1.6621 10−3

Simulated γ 27.1541 46.6781 3.3657 0.4068 1.1853 1.5724 10−3

Errors (%) 3.0376 2.9207 2.2944 18.9192 0.2210 5.7101 10−3

Theoretical γ 26.5980 37.5662 3.0707 0.3297 1.1392 1.4594 10−2

Simulated γ 27.2356 38.1591 2.9870 0.3766 1.1394 1.3874 10−2

Errors (%) 2.3412 1.5537 2.7996 12.4709 0.0190 5.1915 10−2

Theoretical γ 26.9655 28.4120 2.7971 0.3279 1.0747 1.2295 10−1

Simulated γ 27.3271 29.0852 2.5542 0.3398 1.0749 1.1943 10−1

Errors (%) 1.3233 2.3147 9.5078 3.5257 0.0250 2.9454 10−1
lies on the approximation (1/(m − 1)
∑m

i=2 
i) ≈ σ 2
w which turns

out to be inaccurate particularly when m and n are small.

4.2. Detection performance

In this subsection, the detection performance of the pro-
posed algorithms is evaluated by utilizing the simulated thresholds.
For the purpose of comparison, the results of the AGM, MME,
Hadamard ratio [30], SNE, ED(σ 2

w ) and ED(σ̂ 2
w ) methods are pre-

sented as well. The simulated thresholds of the VD1 and Hadamard
ratio schemes are also obtained from 50,000 independent Monte
Carlo trials whereas the simulated thresholds of the other schemes
are given in Tables 4 and 5. Throughout this paper, the channels
H are randomly drawn from a distribution and then fixed dur-
ing the sensing period at each run. For simplicity, the columns
of H are normalized to unity so that the SNR can be defined as
10 log10

tr[Rs]/d
tr[R w ]/m with Rs = E[s(k)sT (k)] and R w = E[w(k)w T (k)].

In this experiment, the channel is generated from a zero-mean
Gaussian distribution and the detection probability is calculated
using 5,000 independent trials.

Fig. 2(a) depicts the detection probability versus SNR for small
samples and a single primary signal. It is seen that, by using the
correlation structure of the received signal, the proposed meth-
ods outperform the MME, Hadamard ratio and ED(σ̂ 2

w ) algorithms,
but are a little bit inferior to the AGM method in terms of detec-
tion probability for the small sample setting. On the other hand, as
the SNE approach utilizes the information of primary source num-
ber, that is, d = 1 is a priori known to the receiver, it is superior
to the blind schemes which do not employ the knowledge of d
and σ 2

w . Nevertheless, although the AGM and SNE algorithms are
able to provide higher detection accuracy than the VD2 method in
this case, the latter is able to yield much more accurate theoretical
threshold than the former, as has been verified by Table 4. When
the number of primary signals is larger than one, say, d = 3, the
SNE method suffers from performance degradation, as is illustrated
in Fig. 2(b). Here, the primary signals are assumed to be uncorre-
lated and of equal powers. On the other hand, as the sample size
becomes sufficiently large, say, n = 100, the performance of the
VD2 detector is very close to that of the AGM scheme, and better
than that of the VD1, Hadamard ratio, SNE and MME approaches.
This is demonstrated in Fig. 2(c). Recall that the AGM approach
is actually the variant of the GLRT, which becomes optimal in the
sense of ML estimation for sufficiently large samples. However, as
the SNE method assumes that the number of PUs is one, its de-
tection accuracy is degraded for d = 3. Since the Hadamard ratio
and VD1 detectors ignore the fact that the noise is IID, their per-
formance is also somewhat inferior to the AGM and VD2 schemes.
The MME method only employs the maximum and minimum sam-
ple eigenvalues for detection, having not utilized the information
of any other sample eigenvalues, its detection performance is infe-
rior to that of the other approaches.

4.3. Extension to complex-valued case

For the noise-only hypothesis, the independent complex Gaus-
sian observations x(k) can be easily expressed as x(k) = xR(k) +
jxI (k) with xR(k) and xI (k) being the real and imaginary parts
of x(k) and j = √−1. As xR(k) is uncorrelated with xI (k), we
have E[x(k)xH (k)] = E[xR(k)xT

R(k)] + E[xI (k)xT
I (k)] = E[y(k)yT (k)]

where

y(k) �
[
xR(k), xI (k)

]
. (24)

Note that the method in [33] may also be employed to transform
the complex observations to its real counterpart. However, it can
lead to a singular covariance matrix for n < 2m. With this transfor-
mation, it is quite straightforward to extend the proposed methods
to the complex-valued case. For the purpose of fair comparison,
the simulated thresholds of all the algorithms are numerically com-
puted from 50,000 independent Monte Carlo trials.

The primary signals, si(k) (i = 1, . . . ,d), are assumed to be
QPSK modulated, which are the IID random symbols taking val-
ues ±√

2/2 ± j
√

2/2 with equal probabilities [42,43]. The MIMO
Rayleigh-fading channel has been well studied in the literature,
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Fig. 2. Detection probability versus SNR for real Gaussian signals. m = 6 and P fa =
10−2.

such as [44–46]. It is shown in [45] that, in the Rayleigh-fading sit-
uation, the columns of the channel matrix H are complex Gaussian
distributed with mean zero and covariance matrix Σ due to the
correlation between the signals at the receiving antennas which
cannot be sufficiently spaced for physical size constraints. As is
indicated in [44–46], the correlated MIMO Rayleigh-fading chan-
nel model is able to precisely describe the practical channels. The
(k, 
)-th entry of Σ is determined as [45, (27)]

Σk
 =
I0(

√
κ2 − 4π2d2

k

+ j4πκ sin(μ)dk
)

I0(κ)
,

(k, 
 = 1, . . . ,m) (25)

where κ controls the width of the angles-of-arrival (AOAs) of the
primary signals impinging upon the antennas of the SU, which
varies from 0 (isotropic scattering) up to ∞ (extremely non-
isotropic scattering), μ ∈ [−π,π) stands for the mean direction
of the AOAs, dk
 is the distance, which is normalized with respect
to the wavelength λ, between the k-th and 
-th antennas of the
SU, and I0(·) stands for the zero-order modified Bessel function.
In this simulation, we set κ = 80 and μ = π/2, and assume that
the antennas of the SU has the linear uniform array structure with
the inter-element distance being λ/2. Consequently, the normal-
ized distance between the adjacent antennas is 0.5.

The detection probabilities versus SNR for the QPSK signal in
the Rayleigh-fading channel are shown in Fig. 3. For the case of
multiple PUs in this sensed channel, we assume that the primary
signals are uncorrelated and with equal powers. We observe from
Fig. 3(a)–(b) that, for the small sample case, the VD1 and VD2
schemes are more close to the ED(σ 2

w ) method than other algo-
rithms except the SNE approach in terms of detection probability.
In other words, they outperform the AGM and Hadamard ratio
schemes and are significantly superior to the MME and ED(σ̂ 2

w ) al-
gorithms at small samples. Moreover, the VD1 method is superior
to the VD2 scheme. It is seen from Fig. 3(c) that, when the num-
ber of samples becomes large enough, the VD1 algorithm surpasses
other algorithms, including the knowledge-based ED(σ 2

w ) and SNE
algorithms.

Let us now study the behaviors of various detectors in uncal-
ibrated receiver. To focus on the effect of non-uniform noise, we
only consider a single PU whose waveform is the QPSK signal.
The receiver operating characteristic (ROC) curves for various de-
tectors are plotted in Fig. 4(a) for the IID (uniform) noise whereas
in Fig. 4(b) for the non-uniform noise, where the number of an-
tennas is 4, the number of samples is 30 and the SNR equals
−5 dB. Meanwhile, for the non-uniform noise, the noise pow-
ers at the four antennas are given as [0,1.7,−0.7,−2] dB. It is
seen from Fig. 4(a) that the VD1 approach is more close to the
benchmark than other algorithms, followed by the SNE and then
by the VD2. As the Hadamard ratio detector essentially ignores
the fact that the noises are IID, it is inferior to the VD1, SNE
and VD2 schemes. However, it still suppresses the AGM, MME and
ED(σ̂ 2

w ). In the situation of non-uniform noise, the Hadamard ratio
method significantly outperforms the non-robust detectors, such
as the VD2, AGM, MME, SNE, and ED(σ̂ 2

w ) approaches. Neverthe-
less, it is inferior to the VD1 algorithm which is as good as the
benchmark, as depicted in Fig. 4(b). That is to say, only the VD1
and Hadamard ratio schemes are robust against the non-uniform
noise, and the former outperforms the latter in accuracy. It should
be pointed out herein that, compared with the Hadamard ratio
approach, the proposed VD1 detector requires the additional con-
straint that the edges of the geometry formed by the SCM are
normalized to unity. Without this constraint, the edges of the ge-
ometry in the Hadamard ratio approach are larger than one in the
presence of PUs, which actually increases the volume. As a result,
the eventual reduction in volume due to the correlation structure
in the Hadamard ratio method is not so significant as that in the
VD1 algorithm. This is why the VD1 approach is superior to the
Hadamard ratio method in detection performance.
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Fig. 3. Detection probability versus SNR for QPSK signals in Rayleigh-fading channel.
m = 6 and P fa = 10−2.

The empirical results for another parameter setting are plotted
in Fig. 5, where the number of antennas is 6, the number of sam-
ples is 100 while the SNR is −10 dB. We observe from Fig. 5(a)
that, for the uniform noise, the VD1 algorithm performs the best,
followed by the SNE, ED(σ 2

w ) and VD2 algorithms which are very
Fig. 4. ROCs of various detectors for QPSK signals in Rayleigh-fading channel. m = 4,
n = 30, d = 1 and SNR = −5 dB.

close to each other in this case. The Hadamard ratio detector has
the similar behavior as the AGM and MME methods but all of them
are inferior to the former four schemes. However, the ED(σ̂ 2

w ) de-
tector has a big gap to the other methods, indicating that it is
not an appropriate candidate for the large sample case. The em-
pirical results for the non-uniform noise are illustrated in Fig. 5(b)
where the noise powers are set as [0,−1,1.5,−0.8,2,−1.7] dB.
Again, only the robust detectors, i.e., the VD1 and Hadamard ratio
methods, are able to keep their detection accuracy whereas other
detectors, i.e., the VD2, AGM, MME, SNE and ED(σ̂ 2

w ) schemes, suf-
fer from performance degradation.

The computational times for various algorithms are depicted in
Fig. 6, where the eigenvalue-based methods use the MATLAB built-
in function SVD and the proposed volume-based and Hadamard
ratio approaches employ the MATLAB built-in function det. It is
observed that, when the number of antennas is less than 15, all
the methods have similar computational requirement. The VD2 de-
tector is somewhat more computationally intensive than the VD1
scheme because additional computations are involved to estimate
σ 2

w and b. As the number of antennas becomes larger, however,
the proposed VD1 approach requires much less computational cost
than the eigenvalue-based detectors. Although the Hadamard ratio
and ED(σ̂ 2

w ) schemes are more computationally efficient than the
VD1 method, they provide inferior detection performance.
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Fig. 5. ROCs of various detectors for QPSK signals in Rayleigh-fading channel. m = 6,
n = 100, d = 1 and SNR = −10 dB.

Fig. 6. Computational time versus number of antennas at m/n = 0.6.

5. Conclusion

The volume-based methods have been proposed for spectrum
sensing. The distribution of the determinant of SCM, namely, the
volume, can be accurately determined in the framework of RMT,
which turns out to be a simple Gaussian distribution. Therefore,
the theoretical threshold of the VD2 method is accurately deter-
mined by utilizing this distribution, particularly for the case when
the number of samples and number of antennas are large and close
to each other. Numerical results agree well with the theoretical
analysis. For the VD1 method, however, its threshold cannot be
theoretically calculated. Meanwhile, the theoretical detection prob-
abilities of the VD1 and VD2 approaches cannot be computed yet.
These will be tackled in our future works.

References

[1] Federal Communication Commission, Spectrum-policy task force, Rep. ET
Docket, No. 02-135, Nov. 2002.

[2] J. Mitola III, Cognitive radio for flexible mobile multimedia communications, in:
Proc. IEEE Mobile Multimedia Commun. Conf., San Diego, CA, USA, Nov. 1999,
pp. 3–10.

[3] S. Haykin, Cognitive radio: Brain-empowered wireless communications, IEEE J.
Sel. Areas Commun. 23 (2) (Feb. 2005) 201–220.

[4] G. Ganesan, Y. Li, Cooperative spectrum sensing in cognitive radio, Part I: Two
user networks, IEEE Trans. Wirel. Commun. 6 (6) (Jun. 2007) 2204–2213.

[5] S. Haykin, D.J. Thomson, J.H. Reed, Spectrum sensing for cognitive radio, Proc.
IEEE 97 (5) (May 2009) 849–877.

[6] A. Pérez-Neira, M. Lagunas, M. Rojas, P. Stoica, Correlation matching approach
for spectrum sensing in open spectrum communications, IEEE Trans. Signal
Process. 57 (12) (Dec. 2009) 4823–4836.

[7] V. Koivunen, S. Chaudhari, H.V. Poor, Autocorrelation-based decentralized se-
quential detection of OFDM signals in cognitive radios, IEEE Trans. Signal Pro-
cess. 57 (7) (Jul. 2009) 2690–2700.

[8] A. Huttunen, J. Lundén, V. Koivunen, H.V. Poor, Collaborative cyclostation-
ary spectrum sensing for cognitive radio systems, IEEE Trans. Signal Process.
57 (11) (Nov. 2009) 4182–4195.

[9] B.I. Ahmad, A. Tarczynski, Reliable wideband multichannel spectrum sens-
ing using randomized sampling schemes, Signal Process. 90 (7) (Jul. 2010)
2232–2242.

[10] F.-X. Socheleaua, S. Houckea, P. Ciblatb, A. Aïssa-El-Beya, Cognitive OFDM sys-
tem detection using pilot tones second and third-order cyclostationarity, Signal
Process. 91 (2) (Feb. 2011) 252–268.

[11] B. Seo, Precoder design in cognitive radio networks with channel covariance
information, Signal Process. 92 (12) (Dec. 2012) 3056–3061.

[12] Z. Quan, S. Cui, A.H. Sayed, H.V. Poor, Optimal multiband joint detection for
spectrum sensing in cognitive radio networks, IEEE Trans. Signal Process. 57 (3)
(Mar. 2009) 1128–1140.

[13] F.F. Digham, M.S. Alouini, M.K. Simon, On the energy detection of unknown
signals over fading channels, IEEE Trans. Commun. 55 (1) (Jan. 2007) 21–24.

[14] S.V. Nagaraj, Entropy-based spectrum sensing in cognitive radio, Signal Process.
89 (2) (Feb. 2009) 174–180.

[15] Y. Zhuan, G. Memik, J. Grosspietsch, Energy detection using estimated noise
variance for spectrum sensing in cognitive radio networks, in: Proc. IEEE Wire-
less Communications and Networking Conference (WCNC), Las Vegas, NV, Mar.
2008, pp. 711–716.

[16] B. Shen, L. Huang, C. Zhao, Z. Zhou, K. Kwak, Energy detection based spectrum
sensing for cognitive radios in noise of uncertain power, in: Proc. Interna-
tional Symposium on Communications and Information Technologies (ISCIT),
Oct. 2008, pp. 628–633.

[17] Y.M. Kim, G. Zheng, S.H. Sohn, J.M. Kim, An alternative energy detection using
sliding window for cognitive radio system, in: Proc. International Conference
on Advanced Communication Technology (ICACT), vol. 1, Gangwon-Do, Feb.
2008, pp. 481–485.

[18] T.J. Lim, R. Zhang, Y.-C. Liang, Y. Zeng, GLRT-based spectrum sensing for cogni-
tive radio, in: Proc. IEEE Global Commun. Conf. (GLOBECOM), New Orleans, LO,
Nov. 2008, pp. 1–5.

[19] Y. Zeng, Y.-C. Liang, Eigenvalue-based spectrum sensing algorithms for cogni-
tive radio, IEEE Trans. Commun. 57 (6) (Jun. 2009) 1784–1793.

[20] A. Kortun, T. Ratnarajah, M. Sellathurai, C. Zhong, C.B. Papadias, On the per-
formance of eigenvalue-based cooperative spectrum sensing for cognitive ratio,
IEEE J. Sel. Top. Signal Process. 5 (1) (Feb. 2011) 49–55.

[21] A. Taherpour, M. Nasiri-Kenari, S. Gazor, Multiple antenna spectrum sensing in
cognitive radios, IEEE Trans. Wirel. Commun. 9 (2) (Nov. 2010) 814–823.

[22] B. Nadler, F. Penna, R. Garello, Performance of eigenvale-based signal detectors
with known and unknown noise level, in: Proc. IEEE International Conference
on Communications (ICC), Kyoto, Japan, Jun. 2011, pp. 1–5.

[23] F. Penna, R. Garello, M. Spirito, Cooperative spectrum sensing based on the
limiting eigenvalue ratio distribution in Wishart matrices, IEEE Commun. Lett.
13 (7) (Jul. 2009) 507–509.

[24] P. Wang, J. Fang, N. Han, H. Li, Multiantenna-assisted spectrum sensing for cog-
nitive radio, IEEE Trans. Veh. Technol. 59 (4) (May 2010) 1791–1800.

http://refhub.elsevier.com/S1051-2004(14)00040-2/bib464343s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib464343s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4D69746F6C61s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4D69746F6C61s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4D69746F6C61s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4861796B696E31s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4861796B696E31s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4747616E6573616Es1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4747616E6573616Es1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4861796B696E32s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4861796B696E32s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib5053746F696361s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib5053746F696361s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib5053746F696361s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4B6F6976756E656E2D506F6F72s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4B6F6976756E656E2D506F6F72s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4B6F6976756E656E2D506F6F72s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib48757474756E656E2D506F6F72s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib48757474756E656E2D506F6F72s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib48757474756E656E2D506F6F72s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4168616D2D546172637A796E736B69s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4168616D2D546172637A796E736B69s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4168616D2D546172637A796E736B69s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib536F6368656C65617561s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib536F6368656C65617561s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib536F6368656C65617561s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4253656Fs1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4253656Fs1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib5A5175616Es1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib5A5175616Es1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib5A5175616Es1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib464644696768616Ds1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib464644696768616Ds1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib53564E61676172616As1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib53564E61676172616As1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib595A6875616E32303038s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib595A6875616E32303038s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib595A6875616E32303038s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib595A6875616E32303038s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib425368656E32303038s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib425368656E32303038s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib425368656E32303038s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib425368656E32303038s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4B696D32303038s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4B696D32303038s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4B696D32303038s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4B696D32303038s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4C696Ds1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4C696Ds1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4C696Ds1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib5A656E6731s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib5A656E6731s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4B6F7274756E3131s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4B6F7274756E3131s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4B6F7274756E3131s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib5461686572706F7572s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib5461686572706F7572s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4E61646C6572s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4E61646C6572s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4E61646C6572s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib50656E6E61s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib50656E6E61s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib50656E6E61s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib57616E673130s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib57616E673130s1


56 L. Huang et al. / Digital Signal Processing 28 (2014) 48–56
[25] L. Wei, O. Tirkkonen, Spectrum sensing in the presence of multiple primary
users, IEEE Trans. Commun. 60 (5) (May 2012) 1268–1277.

[26] C.A. Tracy, H. Widom, On orthogonal and symplectic matrix ensembles, Com-
mun. Math. Phys. 177 (1996) 727–754.

[27] D. Ramírez, G. Vazquez-Vilar, R. López-Valcarce, J. Vía, I. Santamaría, Detection
of rank-p signals in cognitive radio networks with uncalibrated multiple anten-
nas, IEEE Trans. Signal Process. 59 (8) (Aug. 2011) 3764–3774.

[28] J.K. Tugnait, On multiple antenna spectrum sensing under noise variance uncer-
tainty and flat fading, IEEE Trans. Signal Process. 60 (4) (Apr. 2012) 1823–1832.

[29] A. Mariani, A. Giorgetti, M. Chiani, Test of independence for cooperative spec-
trum sensing with uncalibrated receivers, in: Proc. of IEEE Global Communica-
tions Conference (GLOBECOM), Anaheim, CA, 3-7 Dec. 2012, pp. 1374–1379.

[30] R. López-Valcarce, G. Vazquez-Vilar, J. Sala, Multiantenna spectrum sensing
for cognitive radio: Overcoming noise uncertainty, in: Proc. 2nd International
Workshop on Cognitive Information Processing (CIP), Elba, 14–16 June, 2010,
pp. 310–315.

[31] D. Ramírez, J. Vía, I. Santamaría, The locally most powerful test for multi-
antenna spectrum sensing with uncalibrated receivers, in: Proc. IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto,
Japan, March 2012, pp. 3437–3440.

[32] A. Leshem, A.-J. van der Veen, Multichannel detection of Gaussian signals with
uncalibrated receivers, IEEE Signal Process. Lett. 8 (April 2001) 120–122.

[33] Y. Chen, A. Wiesel, Y.C. Eldar, A.O. Hero, Shrinkage algorithms for MMSE co-
variance estimation, IEEE Trans. Signal Process. 58 (10) (Oct. 2010) 5016–5029.

[34] N. Giri, On the complex analysis of T 2- and R2-tests, Ann. Math. Stat. 36 (1965)
665–670.

[35] B.T. Porteous, Improved likelihood ratio statistics for covariance selection mod-
els, Biometrika 72 (1985) 97–101.

[36] D. Jonsson, Some limit theorems for the eigenvalues of a sample covariance
matrix, J. Multivar. Anal. 12 (1982) 1–38.

[37] Z.D. Bai, J.W. Silverstein, CLT for linear spectral statistics of a large dimensional
sample covariance matrix, Ann. Probab. 32 (2004) 553–605.

[38] Q.T. Zhang, Advanced detection techniques for cognitive radio, in: Proc. IEEE In-
ternational Conference on Communications (ICC), Dresden, Germany, Jun. 2009,
pp. 1–5.

[39] Q.T. Zhang, Theoretical performance and thresholds of the multitaper method
for spectrum sensing, IEEE Trans. Veh. Technol. 60 (5) (Jun. 2011) 2128–2138.

[40] M.D. Springer, Algebra of Random Variables, Wiley, New York, 1973.
[41] R.J. Muirhead, Aspects of Multivariate Statistical Theory, Wiley, New York, 1982.
[42] N.S. Alagha, Cramer-Rao bounds of SNR estimates for BPSK and QPSK modu-

lated signals, IEEE Commun. Lett. 5 (1) (Jan. 2001) 10–12.
[43] J.-P. Delmas, H. Abeida, Cramer–Rao bounds of DOA estimates for BPSK and

QPSK modulated signals, IEEE Trans. Signal Process. 54 (1) (Jan. 2006) 117–126.
[44] A. Abdi, J.A. Barger, M. Kaveh, A parametric model for the distribution of the

angle of arrival and the associated correlation function and power spectrum at
the mobile station, IEEE Trans. Veh. Technol. 51 (3) (May 2002) 425–434.

[45] A. Abdi, M. Kaveh, A space-time correlation model for multielement antenna
systems in mobile fading channels, IEEE J. Sel. Areas Commun. 20 (Apr. 2002)
550–560.

[46] M. Chiani, M.Z. Win, A. Zanella, On the capacity of spatially correlated
MIMO Rayleigh-fading channels, IEEE Trans. Inf. Theory 49 (10) (Oct. 2003)
2363–2371.
Lei Huang (M’07) was born in Guangdong, China.
He received the B.Sc., M.Sc., and Ph.D. degrees in
electronic engineering from Xidian University, Xi’an,
China, in 2000, 2003, and 2005, respectively. From
2005 to 2006, he was a Research Associate with the
Department of Electrical and Computer Engineering,
Duke University, Durham, NC. From 2009 to 2010, he
was a Research Fellow with the Department of Elec-
tronic Engineering, City University of Hong Kong and

a Research Associate with the Department of Electronic Engineering, The
Chinese University of Hong Kong. Since 2011, he has joined the Depart-
ment of Electronic and Information Engineering, Harbin Institute of Tech-
nology Shenzhen Graduate School, where he is currently a Professor. His
research interests include spectral estimation, array signal processing, sta-
tistical signal processing, and their applications in radar and wireless com-
munication systems. He currently is an editorial board member of Digital
Signal Processing.

Hing Cheung So (S’90–M’95–SM’07) was born in
Hong Kong. He received the B.Eng. degree from the
City University of Hong Kong and the Ph.D. degree
from The Chinese University of Hong Kong, both in
electronic engineering, in 1990 and 1995, respec-
tively. From 1990 to 1991, he was an Electronic En-
gineer with the Research and Development Division,
Everex Systems Engineering Ltd., Hong Kong. During
1995–1996, he worked as a Postdoctoral Fellow with

The Chinese University of Hong Kong. From 1996 to 1999, he was a Re-
search Assistant Professor with the Department of Electronic Engineering,
City University of Hong Kong, where he is currently an Associate Professor.
His research interests include statistical signal processing, fast and adap-
tive algorithms, signal detection, parameter estimation, and source local-
ization. Dr. So has been on the editorial boards of the IEEE TRANSACTIONS
ON SIGNAL PROCESSING, Signal Processing, Digital Signal Processing, and
ISRN Applied Mathematics, as well as a member of the Signal Processing
Theory and Methods Technical Committee of the IEEE Signal Processing
Society.

Cheng Qian was born in China on November 27,
1988. He received the B.E. degree in communica-
tion engineering from Hangzhou Dianzi University,
Hangzhou, China, in 2011, and M.E. degree in commu-
nication and information engineering from Harbin In-
stitute of Technology (HIT), Shenzhen, China, in 2013.
He is currently pursuing the Ph.D degree in the field
of communication and information engineering at HIT.
His research interests are in array signal processing
and MIMO radar.

http://refhub.elsevier.com/S1051-2004(14)00040-2/bib5765692D5469726B6B6F6E656Es1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib5765692D5469726B6B6F6E656Es1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib54726163795769646F6D31s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib54726163795769646F6D31s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib52616D6972657A3131s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib52616D6972657A3131s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib52616D6972657A3131s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib5475676E6169743132s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib5475676E6169743132s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4D617269616E693132s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4D617269616E693132s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4D617269616E693132s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4C6F70657A2D56616C63617263653130s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4C6F70657A2D56616C63617263653130s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4C6F70657A2D56616C63617263653130s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4C6F70657A2D56616C63617263653130s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib52616D6972657A32303132s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib52616D6972657A32303132s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib52616D6972657A32303132s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib52616D6972657A32303132s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4C657368656D2D5665656Es1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4C657368656D2D5665656Es1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib594368656Es1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib594368656Es1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib47697269s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib47697269s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib506F7274656F7573s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib506F7274656F7573s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4A6F6E73736F6Es1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4A6F6E73736F6Es1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4261695F53696C76s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4261695F53696C76s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib51545A68616E67s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib51545A68616E67s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib51545A68616E67s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib51545A68616E6732303131s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib51545A68616E6732303131s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib537072696E676572s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4D756972686561643832s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib416C6167686132303031s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib416C6167686132303031s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib44656C6D617332303036s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib44656C6D617332303036s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib41626469323030322D35s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib41626469323030322D35s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib41626469323030322D35s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4162646932303032s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4162646932303032s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib4162646932303032s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib436869616E6932303033s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib436869616E6932303033s1
http://refhub.elsevier.com/S1051-2004(14)00040-2/bib436869616E6932303033s1

	Volume-based method for spectrum sensing
	1 Introduction
	2 Problem formulation
	3 Volume-based detector for spectrum sensing
	3.1 Geometric interpretation
	3.2 Derivation
	3.3 Asymptotic theoretical threshold for VD2

	4 Simulation results
	4.1 Accuracy of theoretical decision threshold
	4.2 Detection performance
	4.3 Extension to complex-valued case

	5 Conclusion
	References


