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ABSTRACT

A structured least squares based ESPRIT method is devised
for joint direction-of-arrival and frequency estimation. By
considering the errors in the estimated signal subspace and
employing an iterative minimization procedure, the proposed
approach is able to efficiently refine the estimated signal sub-
space, leading to significant enhancement in estimation per-
formance. Simulation results demonstrate the effectiveness
of the proposed approach.

1. INTRODUCTION

In spatial-temporal radio channel measurement, it is of con-
siderable interest to jointly estimating the direction-of-arrival
(DOA) and frequencies of known signals. It has several ap-
plications, such as radar, sonar and mobile communication.
A precise estimation of DOAs and frequencies of signals of
interest can help to provide better channel information in sup-
port of improved link quality.

Numerous methods have been developed for joint DOA
and frequency estimation. The maximum likelihood (ML) es-
timate [1] is theoretically optimal and it is equivalent to the
least squares estimate under white Gaussian noise situation.
Although the ML estimate has excellent statistical properties,
it requires a multidimensional optimization which is com-
putationally intensive. ESPRIT-like algorithms [3]-[4] have
been proposed to balance the estimation accuracy and com-
putational complexity. Lemma et al. [3] has introduced the
ESPRIT algorithm for joint DOA and frequency estimation.
However, when the signals have approximately the same fre-
quencies, its performance will decrease severely. In [4], the
authors have presented a joint angle and frequency estimation
(JAFE) algorithm that utilizes the temporal-spatial smoothing
technique to preprocess the sample data, and then uses the
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ESPRIT algorithm to estimate the DOA and frequency pa-
rameters. However, the optimal temporal factor mo is hard
to obtain in many applications since mo is a linear function
of the sample size N , i.e., mo ≈ (3N + 2)/5. Moreover, as
the sample size becomes larger, its computational complexity
will increase by O(m3

o).
In this paper, we propose a structured least squares (SLS)

based ESPRIT approach for joint DOA and frequency esti-
mation. Unlike the conventional ESPRIT algorithm [3]-[4],
our proposal employs the forward-backward averaging co-
variance matrix to replace the sample covariance matrix. In
addition, a SLS method is utilized to solve the rotational in-
variance equations to obtain robust DOA and frequency es-
timates. Numerical results demonstrates that the developed
scheme is superior to the ESPRIT and JAFE methods.

2. PROBLEM FORMULATION

Consider a uniform linear array (ULA) with M omnidirec-
tional antennas. Let fc be the center frequency of the band of
the interest. Assume that there are P (P < M) narrow-band
source signals {dp(t)}, with center frequencies fc + fp, p =
1, · · · , P , imping on the array from directions {θ1, · · · , θP }
in the far field. After down-conversion to baseband, the M×1
observation vector is

x(t) =
P∑
i=1

a(θi)di(t)e
j2πfit/F + n(t)

= AΦtd(t) + n(t) (1)

where F is the sample rate, d(t) = [d1(t), · · · , dP (t)]T is
the source signal vector with (·)T being the transpose, n(t)
is the additive white Gaussian process with zero mean and
variance σ2

nIM , IM is a M × M identity matrix, and A =
[a(θ1), · · · ,a(θP )] is the array manifold with

a(θp) =
[
1, e−j2π sin θpd/λ, · · · , e−j2π(M−1) sin θpd/λ

]T
(2)

being the pth steering vector, and

Φ = diag{ej2πf1/F , · · · , ej2πfP /F }. (3)



Here, λ is the carrier wavelength and d = λ/2 is the interele-
ment spacing.

3. PROPOSED ALGORITHM

3.1. Data Processing

We assume that the narrowband signals are block fading that
{dp(k)} remain unchanged in a short sampling interval, i.e.,

d(t) ≈ d

(
t+

1

F

)
≈ · · · ≈ d

(
t+

m− 1

F

)
. (4)

This means that, for the same sampling period, the first
m (m ≪ F ) samples are approximately the same. It allows
us to collect m sample subsets with each subset containing N
samples. As a result, similar to [3], the data matrix is formed
as

X =


x(0) x(1) · · · x(N − 1)
x
(
1
F

)
x
(
1 + 1

F

)
· · · x

(
N − 1 + 1

F

)
...

...
. . .

...
x
(
m−1
F

)
x
(
1 + m−1

F

)
· · · x

(
N − 1 + m−1

F

)
 .

(5)

Substituting (1) and (4) into (5) yields

X ≈ AmDm +Nm (6)

where

Am =
[
(A)T (AΦ)T · · · (AΦm−1)T

]T
(7)

Dm =
[
d(0) Φd

(
1
F

)
· · · ΦN−1d

(
N−1
F

)]
(8)

Nm =
[
n(0) n

(
1
F

)
· · · n

(
N−1
F

)]
. (9)

Let

Φ̃ =


1 · · · 1

ej2πf1/F · · · ej2πfP /F

...
. . .

...
ej2πf1(m−1)/F · · · ej2πfP (m−1)/F

 . (10)

Then (6) can be rewritten as

X ≈ (Φ̃⊙A)Dm +Nm (11)

where ⊙ is the Khatri-Rao product.

3.2. Joint DOA and Frequency Estimation

Let R̂ = XmXH
m/N ∈ CmM×mM be the sample covariance

matrix of Xm. When the source signals are correlated, R̂ will
be poorly estimated. Therefore, we use the forward-backward
averaging matrix [7] to replace R̂, i.e.,

R =
1

2

(
R̂+ΠR̂∗Π

)
(12)

where Π is the exchange matrix with one on its antidiagonal
and zeros elsewhere, and (·)∗ stands for complex conjugate.
Note that the P eigenvectors corresponding to the P largest
eigenvalues are used to form the signal subspace Us, that is,
span{Us} = span{Am}.

We begin the estimation of DOA and spatial frequency by
defining the following two select matrices:{

J↑
θ = Im ⊗ [IM−1 01] (13a)

J↓
θ = Im ⊗ [01 IM−1] (13b)

and {
J↑
f = [Im−1 01]⊗ IM (14a)

J↓
f = [01 Im−1]⊗ IM . (14b)

where ⊗ is the kronecker product and 01 is a (M−1)×1 zero
vector. Then the rotational invariance equations for DOA and
frequency estimation can be expressed as

J↑
θUsΨθ = J↓

θUs (15a)

J↑
fUsΨf = J↓

fUs (15b)

where

Ψθ =TΘT−1 (16a)

Ψf =TΦT−1 (16b)

with T being a P × P nonsingular matrix and

Θ = diag{ej2π sin θ1d/λ, · · · , ej2π sin θP d/λ}. (17)

By solving (15) and performing the eigenvalue decomposition
of Θ and Φ, we obtain the DOA and frequency estimates as

θ̂i = sin−1

(
λ · ∠(αi)

2πd

)
(18)

f̂i =
F · ∠(βi)

2π
, i = 1, · · · , P (19)

where ∠ represents the angle operator, αi and βi are the ith
eigenvalues of Ψθ and Ψf , respectively.

In [3] and [4], the authors utilize the least squares (L-
S) to solve (15). However, (15) is a highly structured and
overdetermined equation. With the increase of the overlap-
ping elements in (15), the performance of the LS solutions
will decrease, as has been pointed out in [10]. This is due to
the fact that, in the LS method, it is assumed that J↑

θUs and
J↑
fUs are known without error, and only the errors in J↓

θUs

and J↓
fUs are minimized. However, such an assumption is

not valid in our problem. In fact, each term in (15) has errors.
Therefore, we assume that there exists errors in Us, Ψθ and
Ψf . Hence, their improved estimates can be formulated as
Ūs = Us+∆Us, Ψ̄θ = Ψθ+∆Ψθ and Ψ̄f = Ψf +∆Ψf .



In order to minimize ∆Us, ∆Ψθ and ∆Ψf , we need to use
an iterative minimization procedure.

Meanwhile, let us define two residual matrices

Eθ = J↑
θŪsΨ̄θ − J↓

θŪs (20a)

Ef = J↑
fŪsΨ̄f − J↑

fŪs. (20b)

At the kth iteration, let Ūs,k = Us,k−1 +∆Us,k−1, Ψ̄θ,k =
Ψθ,k−1 + ∆Ψθ,k−1 and Ψ̄f,k = Ψf,k−1 + ∆Ψf,k−1 be
the refined matrices of Ū, Ψ̄θ and Ψ̄f , respectively. Mean-
while, let Eθ,k and Eθ,k be the residual matrices. Therefore,
at the (k+1)th iteration, by neglecting the second-order term
∆Us,k∆Ψθ,k and ∆Us,k∆Ψf,k, we obtain

Eθ,k+1 ≈ Eθ,k + J↑
θUs,k∆Ψθ,k + J↑

θ∆Us,kΨθ,k

− J↓
θ∆Us,k (21a)

Ef,k+1 ≈ Ef,k + J↑
fUs,k∆Ψf,k + J↑

f∆Us,kΨf,k

− J↓
f∆Us,k. (21b)

It follows from (21) that

vec {Eθ,k+1} ≈ vec {Eθ,k}+
[
IP ⊗ (J↑

θUs,k)
]
×

vec {∆Ψθ,k}+
[
ΨT

θ,k ⊗ J↑
θ − IP ⊗ J↓

θ

]
× vec {∆Us,k}

(22a)

vec {Ef,k+1} ≈ vec {Ef,k}+
[
IP ⊗ (J↑

fUs,k)
]
×

vec {∆Ψf,k}+
[
ΨT

f,k ⊗ J↑
f − IP ⊗ J↓

f

]
× vec {∆Us,k}

(22b)

where vec{·} is the vectorization operator. In addition, we
define ∆Uk =

∑k−1
i=1 ∆Us,i as the signal subspace estima-

tion error matrix at the kth iteration. Arrange (22) into matrix
form yields the following SLS problem

min
∆Ψθ,k,∆Ψf,k

∣∣∣∣∣∣
∣∣∣∣∣∣Hk·

vec {∆Ψθ,k}
vec {∆Ψf,k}
vec {∆Us,k}

+
 vec {Eθ,k}

vec {Ef,k}
κ · vec{∆Uk}

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(23)

where κ > 1 is a user defined parameter 1 that keeps the
entries of ∆Us be larger than those of Eθ and Ef , and

Hk =IP ⊗ (J↑
θUs,k) 0 ΨT

θ,k ⊗ J↑
θ − IP ⊗ J↓

θ

0 IP ⊗ (J↑
fUs,k)Ψ

T
f,k ⊗ J↑

f − IP ⊗ J↓
f

0 0 κImMP

 .

1There is no definite way to determine κ. But similar to [10], we can
alternatively choose κ =

√
(m(M − 1) +M(m− 1))/αmM where α is

also a user defined factor. Actually, the performance of our solution is not
sensitive to the chosen of κ. The presented simulation results were obtained
for κ = 5, whe1reas κ = 30 and κ = 100 produced almost the same
performance.

In our study, we use the LS solutions, ΨLS
θ , ΨLS

f and ULS
s

as the initialized estimates of Φθ, Φf and Es. The iteration
stopping condition is

min{||∆Ψθ,k||2F , ||∆Ψf,k||2F , ||∆Us,k||2F } ≤ ϵ (24)

where ϵ is predefined small positive constant. When the algo-
rithm converges at the kth iteration, we use ΨSLS

θ = Ψθ,k +
∆Ψθ,k and ΨSLS

f = Ψf,k + ∆Ψf,k as the final estimates of
Ψθ and Ψf , respectively. The DOA and frequency estimates
are eventually computed from (18)-(19).

3.3. Computational Complexity

We first analyze the complexity of the JADE algorithm.
It is clear that the computing of the sample covariance
and its EVD account for most of the complexity of the
JADE method. The complexity of computing R in (12)
is O(m2M2N) and the EVD of R is O(m3M3). Hance,
the complexity for JADE is about O(m2M2N + m3M3).
For the proposed scheme, the additional computational bur-
den is caused by the iteration procedure utilized to solve
(23). In each iteration step, a least squares solver is em-
ployed to obtain ∆Φθ,k, ∆Φf,k and ∆Es,k. The complexity
for this procedure is about O(10m3M3P 3) since Hk is a
(3MNP − mP − MP ) × (2P 2 + mMP ) matrix and we
have mM > P , mM > m and mM > M . Therefore,
for the proposed method, the computational complexity is
about O(10Km3M3P 3) where K is the number of itera-
tions. Note that for the SLS, two iterations are enough to
provide a considerable accuracy.

4. SIMULATION

The performance of the proposed algorithm is compared to
the ESPRIT [3] and JAFE [4] algorithms in terms of root
mean square error (RMSE). We consider a ULA of M =
7 sensors successively separated by a half-wavelength. The
noise is white Gaussian process with zeros mean and unit
variance. For the JAFE algorithm, as suggested in [4], L is
selected as L ≈ 0.4M . In the sequel, we set L = 3. Fur-
thermore, we set m = 3 in (6). The number of snapshots is
N = 64. The tolerance parameter of the proposed algorithm
is set to be ϵ = 10−7. We also assume the number of signal-
s is known or estimated by [11] All the results are based on
1000 independent trials.

Example 1: In this example, we examine the RMSE per-
formance as a function of signal-to-noise ratio (SNR). We set
σ2
n = 1 and vary the signal power such that the input SNR

goes from -6dB to 30dB. Three equal-power narrowband sig-
nals are assumed to imping upon the array from directions
θ1 = 10◦, θ2 = 19◦ and θ3 = 30◦. The center frequen-
cies of the signals are f1 = 2MHz, f2 = 2.06MHz and
f3 = 2.2MHz, respectively. For the JAFE algorithm [4], the
temporal and spatial smoothing factors are both chosen to be



3. It is observed from Fig. 1 that the proposed method outper-
forms the ESPRIT and the JAFE algorithms for all the SNRs.
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Fig. 1. RMSE versus SNR

Example 2: The experiment is devised to compare the
DOA and frequency estimation errors as a function of the an-
gular separation. The SNR is set as SNR= 0dB. We consider
two signals in this example. The frequencies of the two sig-
nals are set to be f1 = 2MHz and f2 = 2.15MHz, and the
DOA of the first signal is fixed at θ1 = 0◦. We set the DOA
of the second signal as θ2 = 0◦+∆θ where ∆θ is varied from
0◦ to 16◦. From Fig. 2, we can see that when angular sepa-
ration is smaller than 6◦, the proposed algorithm outperforms
its counterparts in both DOA and frequency estimation.
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Fig. 2. RMSE versus angular separation

Example 3: Fig. 3 shows the RMSE performance as a
function of frequency separation. We set the DOAs of t-
wo signals as θ1 = 0◦ and θ2 = 6◦. The frequency of
the first signal is f1 = 2MHz. The frequency of the sec-
ond signal is f2 = (2 + ∆f)MHz where ∆f is varied from
0kHz to 200kHz. Note that in small frequency separation,

e.g., ∆f < 100kHz, the two signals are temporally correlat-
ed. Due to the forward-backward averaging technique and
the SLS method, it is observed from Fig. 3 that the pro-
posed scheme outperforms the other two algorithms. When
∆f is sufficiently large, the JAFE is a little bit inferior to the
ESPRIT method, and the proposed and ESPRIT algorithms
merge together.
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Fig. 3. RMSE versus frequency separation

5. CONCLUSION

A SLS-based ESPRIT algorithm for joint DOA and frequen-
cy estimation is devised in this paper. Unlike the existing
ESPRIT, the proposed method considers the errors in the es-
timated signal subspace. Meanwhile, our proposal is able to
utilize the SLS method to solve the rotational invariance e-
quations, leading to significant enhancement in joint angle
and frequency estimation performance. Computer simulation
demonstrates the improvement of the proposed scheme.
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