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Abstract: A computationally efficient method of signal
subspace fitting (SSF) for angle estimation is proposed in
this paper. Given the training data of one desired signal, the
proposed method finds direction-of-arrival (DOA) parameters
of all signals with much lower computational complexity
than the classical weighted subspace fitting (WSF) method.
Simulations are given to show that the proposed method
provides the comparable estimation accuracy with the
weighted subspace fitting estimator for uncorrelated and
coherent signals.
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I. INTRODUCTION

Super-resolving correlated or even coherent signals is
greatly interesting in the problem of direction-of-arrival (DOA)
estimation. It is shown in [1] that the weighted subspace
fitting (WSF) method [2]-[4], a minimizing technique, always
outperforms the deterministic maximum likelihood (DML)
estimator [5] in the performance of separating correlated
signals. Nevertheless, the WSF estimator is of high com-
putational complexity, partially due to the estimation of the
signal subspace, which implies that the estimate of an array
covariance matrix and its eigendecomposition are involved.

In the past two decades, one makes less use of the priori
knowledge, more specifically, the training data or the spreading
codes of desired signals, in DOA estimation. In fact, the priori
knowledge is accessible in the modern communication system
and GPS. Exploiting the priori knowledge, one may develop
low computational complexity methods for DOA estimation
with good estimation performance. It is well known that the
multi-stage wiener filter (MSWF) proposed by Goldstein et
al [6] [7] requires the training sequences or the spreading
codes of users. As an efficient reduced-rank technique, the
MSWF outperforms other adaptive reduced-rank methods such
as the Principal Components (PC) method [8] and the Cross-
Spectral (CS) metric [9]. The MSWF works so efficiently that
it has been widely used in the interference suppression (IS)
of communication [6] [10] and GPS [11] [12]. Recently, the
methods termed the ROCK MUSIC [13][14] and ROCKET
algorithms [15] based on the MSWF were proposed to high-
resolution spectral estimation. However, the ROCK MUSIC
technique requires the forward and backward recursions of
the MSWF, which increase the complexity of the algorithm.
Moreover, the ROCKET algorithm still needs complex matrix-

matrix products to find the reduced-rank data matrix and the
reduced-rank autoregressive (AR) weight vector. This indicates
that additionally computational burden is included.

In the paper, we assume that the training data of one desired
signal is well known. With the assumption, a computationally
efficient method of signal subspace fitting (SSF) for DOA
estimation is proposed. The proposed estimator does not com-
pute the covariance matrix or its eigenvectors, and does not
need the backward recursion of the MSWF, thereby requiring
much lower computational cost than the existing subspace
based methods. Numerical results imply that the estimation
performance of the proposed estimator approaches to that
of the classical WSF method for uncorrelated and coherent
signals.

II. PROBLEM FORMULATION

A. Data Model

Let us consider a uniform linear array (ULA) of M isotropic
sensors that received P narrowband signals from distinct
directions θ1, θ2, · · · , θP . The data, which are corrupted by
additive noise, received by the array at the kth snapshot can
be written as

x(k) =
P∑

i=1

a(θi)si(k) + n(k) (1)

= A(θ)s(k) + n(k) k = 0, · · · , N−1

where

s(k) = [s1(k), s2(k), · · · , sP (k)]T

A(θ) = [a(θ1),a(θ2), · · · ,a(θP )]

are the signal vector and the M × P steering matrix, respec-
tively, n(k) ∈ CM×1 is noise vector, N denotes the number
of snapshots, P represents the number of signals, and the
superscript (·)T is the transpose operator. a(θi) is the steering
vector toward direction θi and takes the following form

a(θi) =
1√
M

[
1, ejϕi , · · · , ej(M−1)ϕi

]T

(2)

where ϕi = 2πd
λ sin (θi) in which θi ∈ (−π/2, π/2), d and

λ are inter-element spacing and the wavelength, respectively.
Throughout the paper we assume that M > P . Furthermore,
the background noise uncorrelated with the signals is a sta-
tionary Gaussian white random process, which is also spatially
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white and circularly symmetric. Therefore, the covariance
matrix can be expressed as

Rx = E
[
x(k)xH(k)

]
= A(θ)RsAH(θ) + σ2

nIM (3)

where Rs = E
[
s(k)sH(k)

]
and σ2

n are the signal covariance
matrix and the noise variance, respectively, and IM is the
M × M identity matrix.

For uncorrelated signals, performing the eigenvalue decom-
position of the covariance matrix Rx leads to

Rx = VsΛsVH
s + σ2

nVnVH
n . (4)

The number of the columns of Vs is equal to the rank P ′

of the signal covariance matrix Rs. Thus the columns of Vs

span the same range subspace of A(θ). Considering (3) and
(4), and performing some algebraic manipulations yield

Vs = A(θ)Q (5)

where Q ∈ CP×P ′
is the nonsingular matrix. Equation (5)

forms a basis for the classical signal subspace fitting. θ and
Q are unknown and require to be searched by solving (5). In
fact, if the theoretical Vs is replaced by its estimate V̂s, there
will be no accurate solution to the equation above. In this case,
one attempts to minimize some distance measure between V̂s

and A(θ)Q. For this purpose, the Frobenius norm is often
used. Therefore, the SSF estimator is obtained by solving the
following non-linear optimization problem:

{θ̂, Q̂} = arg min
θ,Q

‖V̂s − A(θ)Q‖2
F . (6)

Since the cost function above is quadratic with respect to
Q, Q̂ is easily obtained. By substituting the least squares
solution Q̂ = [AH(θ)A(θ)]−1AH(θ)V̂s into (6), we obtain
the following equivalent optimization problem without the
parameter Q:

θ̂SSF = arg min
θ

{
tr

[
P⊥

A(θ)V̂sV̂H
s

]}
(7)

where P⊥
A = IM − A(θ)[AH(θ)A(θ)]−1AH(θ). Since the

eigenvectors are estimated with a quality, commensurate with
the closeness of the corresponding eigenvalues to the noise
variance, it is natural to weight each eigenvectors and lead to

θ̂WSF = arg min
θ

{
tr

[
P⊥

A(θ)V̂sWV̂H
s

]}
(8)

where W is the weighting matrix whose optimal solution is
Wopt = (Λs − σ2

nIM )2Λ−1
s [1].

B. Multi-Stage Wiener Filter

It is well known that the wiener filter (WF) wwf ∈ CM×1

can be used to estimate the desired signal d(k) ∈ C from
the observation data x(k) in the minimum mean square error
(MMSE) sense. Thereby, we get the following design criterion

wwf = arg min
w

E{|d(k) − wHx(k)|2} (9)

where d̂(k) = wHx(k) represents the estimate of the desired
signal d(k), and w ∈ CM×1 is the linear filter. Solving (9)
leads to the Wiener-Hopf equation

Rxwwf = rxd (10)

where rxd = E[x(k)d∗(k)]. The classical wiener filter, i.e.,
wwf = R−1

x rxd, is computationally intensive for large M
since the inverse of the covariance matrix is required. The
MSWF was developed by Goldstein et al [7] to find an
approximate solution to the Wiener-Hopf equation which does
not need the inverse of the covariance matrix. In contrast to the
principal components (PC) method [8] and the cross-spectral
(CS) metric [9], the MSWF needs much lower computational
cost, offers faster convergence and can work in the low-
sample support operational environment where other adaptive
algorithms fail. The MSWF based on the data-level lattice
structure [16] is given as follows:

• Initialization: d0(k) = s1(k) and x0(k) = x(k).
• Forward Recursion: For i = 1, 2, · · · ,M :

hi = E[x(k)i−1d
∗
i−1(k)]/‖E[x(k)i−1d

∗
i−1(k)]‖2;

di(k) = hH
i xi−1(k);

xi(k) = xi−1(k) − hidi(k).
• Backward Recursion: For i = M,M − 1, · · · , 1 with

eM (k) = dM (k):
wi = E[di−1(k)e∗i (k)]/E[|ei(k)|2];
ei−1(k) = di−1(k) − w∗

i ei(k).

The corresponding block diagram is seen in Fig. 1.
The pre-filtering matrix TM = [h1,h2, . . . ,hM ] is formed
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Fig. 1. Lattice structure of the MSWF. The dashed line denotes the basic
box for each additional stage.

by the M matched filters in the forward decomposition of
the MSWF. Notice that the matched filter hi ∈ CM , i =
1, 2, . . . ,M maximizes the real part of the correlation between
the new desired signal di(k) = hH

i xi−1(k) ∈ C at stage i
and the desired signal di−1(k) at the previous stage i − 1,
forcing the desired signals between successive stages to be
in-phase. However, the blocking matrix Bi = IM − hihH

i

guarantees that TM decorrelates all lags in the process di(k)
greater than one. It follows that the pre-filtered covariance



matrix is tridiagonal, i.e.

TH
MRx0TM =




σ2
d1

δ∗2
δ2 σ2

d2
δ∗3

δ3 σ2
d3

. . .
. . .

. . . δ∗M
δM σ2

dM




:= Rd (11)

where where σ2
di

= E [di(k)d∗i (k)], and δi =
E

[
di(k)d∗i−1(k)

]
.

III. COMPUTATIONALLY EFFICIENT SSF METHOD

Notice that the pre-filtering matrix TM is the unitary matrix.
Thereby, considering (3) and (11) results in

ARsAH + σ2
nIM = TMRdTH

M

=
[
Ts Tn

][ Rs
d CH

C Rn
d

][
TH

s

TH
n

]

= TsRs
dT

H
s + TnCTH

s

+ TsCHTH
n + TnRn

dTH
n (12)

= TsRs
dT

H
s + TnRn

dTH
n

+ δP ′+1hP ′+1hH
P ′ + δ∗P ′+1hP ′hH

P ′+1

where

C =




0 · · · 0 δP ′+1

0 · · · 0 0
...

. . .
...

...
0 · · · 0 0


 (13)

Ts = [h1,h2, · · · ,hP ′ ] (14)

Tn = [hP ′+1,hP ′+2, · · · ,hM ] . (15)

It should be mentioned that Rd can be expressed as

Rd = E
[
d(k)dH(k)

]
(16)

where
d(k) = [d1(k), d2(k), · · · , dM (k)]T . (17)

Since the process xi(k), i ∈ {P ′, P ′ + 1, · · · ,M − 1} is white
and has the following form

xi(k) =


 1∏

j=i

Bj


n(k) (18)

where Bj = IM − hjhH
j . It follows that

δi+1 = E
[
di+1(k)dH

i (k)
]

= E
[
hH

i+1xi(k)xH
i−1(k)hi

]
= hH

i+1E
[
xi(k)xH

i−1(k)
]
hi (19)

= 0

where i = P ′, P ′ + 1, · · · ,M − 1. So (12) can be rewritten as

A(θ)RsAH(θ)+ σ2
nIM = TsRs

dT
H
s + TnΛnTH

n (20)

where Λn = diag(σ2
dP ′+1

, σ2
dp′+2

, · · · , σ2
dM

). It is easy to see

that TH
n Ts = 0 since all the matched filters h1,h2, · · · ,hM

are orthogonal. Post-multiplying two sides of (20) by Ts leads
to

A(θ)RsAH(θ)Ts+σ2
nTs = TsRs

dT
H
s Ts+TnΛnTH

nTs

= TsRs
d, (21)

namely

Ts(Rs
d − σ2

nIP ′) = A(θ)RsAH(θ)Ts. (22)

Therefore

Ts = A(θ)RsAH(θ)Ts(Rs
d − σ2

nIP ′)−1

= A(θ)K (23)

where K = RsAH(θ)Ts(Rs
d −σ2

nIP ′)−1 ∈ CP×P ′
Since Rs

and (Rs
d − σ2

nIP ′)−1 are the nonsingular matrices and A(θ)
is the vandermonde matrix, we get

rank(K) = rank
[
AH(θ)Ts

]
= P ′. (24)

Therefore, from (23) it follows that Ts spans the signal
subspace. Thereby, the relation (23) creates a basis for the
SSF, and we have the following criterion function:

{
θ̂, K̂

}
= arg min

θ,K
‖T̂s − A(θ)K‖2

F (25)

where T̂s is the estimate of Ts.
Similar to (6), (25) is also quadratic with respect to K. Thus,

the parameter K can be solved and replaced in the criterion
function above. For the fixed unknown parameter A(θ), the
solution for the linear parameter K is

K̂ = A†(θ)T̂s (26)

where A†(θ) =
[
AH(θ)A(θ)

]−1
AH(θ). Substituting (26)

into (25), we get the SSF cost function without K:

θ̂ = arg min
θ

‖P⊥
A(θ)T̂s‖2

F

= arg min
θ

{
tr

[
P⊥

A(θ)T̂sT̂H
s

]}
. (27)

From (27), it is easy to see that, the new signal subspace
is spanned by the former P ′ matched filters of the MSWF.
Finding the novel signal subspace only needs the P ′ forward
recursions of the MSWF, dose not require to estimate the array
covariance matrix Rx0 and compute its eigenvectors. Hence,
the novel criterion function is very distinct from that of the
classical WSF estimator though they are similar formally.

IV. COMPUTATIONAL COST REQUIREMENT

It should be noted that the efficient implementation of the
MSWF based on the data-lever lattice structure avoids the
formation of blocking matrices, and all the operations of the
MSWF only involve complex matrix-vector products, thereby
requiring the computational complexity of O(MN) for each
matched filter hi, i = 1, 2, · · · , P ′. Thus, to estimate the
signal subspace Ts of rank P ′, the computational cost of
the proposed method is merely O(P ′MN) flops. However,
the classical WSF estimator relays on the estimation of the
covariance matrix and its eigendecomposition, which need
O(M2N + M3) flops.



V. NUMERICAL RESULTS

In this section, the performance of the proposed method
and the classical WSF method is compared for the problem
of the DOA estimation. The array herein is assumed to be a
ULA with the isotropic sensors, whose spacings equal half-
wavelength. The number of signals is known. We make 300
Monte Carlo runs for each experiment to compute the root-
mean-squared errors (RMSE’s) of estimated DOAs.

Example 1 (uncorrelated signal case) Suppose that there
are three uncorrelated signals with equal power in the far field
impinging upon the ULA. The true DOAs are {−4o, 0o, 5o}.
The background noise is assumed to be a stationary Gaussian
white random process. Signal-to-noise ratio (SNR) is defined
as 10 log(σ2

s/σ2
n), where σ2

s is the power of each signal in
single sensor. The RMSE’s of estimated DOAs versus SNR
are shown in Fig. 2, where the rank of the MSWF is equal to
3, the number of sensors is 16 and the number of snapshots
equals 64. It is demonstrated in Fig. 2 that the new estimator
yields the comparable estimation performance as the WSF
method when SNR is greater than 10dB, the performance of
the proposed method slightly decreased as SNR≤ 10dB. The
RMSE’s of the two estimators approach to the Cramér-Rao
bound (CRB) as SNR is large.

The RMSE’s of estimated DOAs versus the number of
snapshots are shown in Fig. 3, where SNR=15dB and D=3.
It can be observed that the RMSE’s of the proposed method
almost coincide with those of the classical WSF as the number
of snapshots increases, thereby indicating that the proposed
method yields the comparable estimation accuracy with the
WSF method.

Example 2 (coherent signal case) Suppose that there are
three signals impinging upon the array from the same signal
source. The first is a direct-path signal and the others are the
scaled and delayed replicas of the first signal that represent the
multipaths or the ”smart” jammers. The propagation constants
are {1,−0.8 + j0.6,−0.4 + j0.7}. The true DOAs are still
assumed to be {−4o, 0o, 5o}. The RMSE’s of estimated
DOAs versus SNR are demonstrated in Fig. 4 where the rank
of the MSWF equals 1 and the number of snapshots is 64. It
is easy to see that the proposed method outperforms the WSF
estimator when SNR is less than -5dB. When SNR is large,
the RMSE’s of the two methods approach to the CRB.

For the fixed SNR equal to 15dB and the rank of the MSWF
equal to 1, Fig. 5 displays that the RMSE’s of the proposed
method are lower than or coincide with those of the classical
WSF method as the number of snapshots increases, thus
implying that the proposed technique surpasses the classical
WSF method in the case of coherent signals.

VI. CONCLUSION

A computationally efficient SSF method for DOA estima-
tion has been presented in the paper. The new signal subspace
of the proposed method is obtained merely by calculating the
former P ′ matched filters of the MSWF, dose not include the
estimate of the covariance matrix or its eigendecomposition,
either not need to compute the scalar wiener filters in the

backward recursion of the MSWF. Thus, the computational
complexity of the proposed method is much lower than that
of the classical WSF method. Numerical results shows that the
proposed estimator yields the comparable estimation accuracy
with the classical WSF method.
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