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Abstract—In this work, the volume-based method for spectrum
sensing is analyzed, which is able to provide the desirable prop-
erties of constant false-alarm rate, robustness against deviation
from independent and identically distributed (IID) noise and be-
ing free of noise uncertainty. By computing the first and second
moments for the signal-absence and signal-presence hypotheses
together with using the Gamma distribution approximation, we
derive accurate analytic formulae for the false-alarm and detection
probabilities for IID noise situations. This enables us to develop
theoretical decision threshold as well as receiver operating charac-
teristic. Numerical results are presented to validate our theoretical
findings.

Index Terms—Cognitive radio, spectrum sensing, volume,
Gamma distribution, multiple antenna.

I. INTRODUCTION

A S a fundamental element in cognitive radio (CR) [1], [2],
spectrum sensing has received much attention in the liter-

ature. Basically, a secondary (unlicensed) user (SU) is allowed
to borrow the frequency channels from the primary (licensed)
users (PUs) in the same CR network provided that it does not
cause intolerable interference to the latter. To maximize the
spectral utilization and minimize the harmful interference to
the PUs, the SU usually needs to employ multiple antennas to
reliably detect the PUs particularly at low signal-to-noise ratio
(SNR) and/or small samples [3], [4]. Nevertheless, the multi-
antenna receiver is typically uncalibrated or contains calibration
error in practice, thereby calling for robust methodologies for
spectrum sensing.

Numerous methodologies have been devised for spectrum
sensing in the literature, varying from non-blind approach to
blind approach. Basically, the non-blind algorithms need to
employ some a priori knowledge of the noise, signal or channel
to construct their test statistics, such as the energy detection
(ED) method [5]–[7] and feature detection approaches [8]–[11].
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With the known noise variance, it is proved that the ED method
is optimal for independent and identically distributed (IID)
observations. Nevertheless, its optimality cannot be guaran-
teed for the situation of unknown noise variance because it
is rather sensitive to the noise uncertainty in the estimated
noise variance, particularly for the non-IID noise. It is shown
in [10], [11] that the feature detector is robust against the
noise uncertainty and provide superior detection performance.
However, it usually suffers from synchronization errors and
frequency offsets in practical situations, thereby limiting its
applications. Indeed, the presence of primary signals not only
changes the energy in the observation data but the correlation
structure as well. The correlation structure inherent in the ob-
servation covariance matrix leads to the most spread-out eigen-
spectrum, providing a good indication for the primary signals.
In addition, unlike the ED and feature detection schemes, the
eigenvalue-based approach is free of the noise variance and
signal features, thereby being a blind detector. As a result, the
eigenvalue-based spectrum sensing approaches have received
much attention [3], [12]–[16]. As a generalized likelihood ratio
test (GLRT) variant, the spherical test (ST) detector [17] is
able to reliably identify the correlated signals embedded in
additive IID noise. In fact, the ST detector is equivalent to
the eigenvalue arithmetic-to-geometric mean (AGM) algorithm
[18]. Nevertheless, it is indicated in [19] that, as the locally
most powerful invariant test for sphericity, John’s detector [20]
is superior to the ST detector when the numbers of antennas and
samples tend to infinity at the same rate. As a matter of fact, the
spectrum sensing algorithms above are developed upon the IID
noise assumption and thereby not robust against the deviation
from the IID noise, which is quite relevant in the real-world
applications since the SU receiver is typically uncalibrated.
Even though the receiver can be calibrated, the calibration error
makes the thermal noise to be non-ideal IID to some extent,
which poses a big challenge for practical spectrum sensing.
Indeed, besides the non-IID noise, the radio frequency (RF) IQ
imbalance [21], [22] can also lead to performance degradation
for the spectrum sensing methods, which, however, is beyond
the scope of this paper.

Some approaches have been suggested for robust spectrum
sensing in the literature, such as the GLRT test [23], indepen-
dence test [24], Hadamard ratio test [25], [26], Gerschgorin
disk test [27], locally most powerful invariant test (LMPIT)
[28] and volume-based test approaches [29]. Being robust
against the non-IID noise and derived in the GLRT paradigm,
the Hadamard ratio approach [30]–[32] has received much
attention in the community of spectrum sensing, such as [25],
[26]. In this approach, spectrum sensing is cast as the issue of
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distinguishing between a diagonal matrix and an arbitrary
Hermitian matrix. A variant of the Hadamard ratio approach for
spectrum sensing has been proposed in [25], where the number
of PUs needs to be known a priori to the receiver, which, how-
ever, is not rational in the practical spectrum sensing situations.
On the other hand, the performance of the Hadamard ratio
algorithm for spectrum sensing has been analyzed in [23], [24].
However, as pointed out in [29], although the Hadamard ratio
test is robust against the non-IID noise, its detection perfor-
mance needs to be further enhanced. Unlike the Hadamard ratio
approach, the volume-based detector [29] is able to employ the
correlation among the primary signals to further increase the
denominator of the test statistic, leading to significant reduc-
tion in the test variable under the signal-presence hypothesis.
This eventually leads to considerable improvement in detection
performance for the volume-based approach.

It is worth pointing out that the volume-based detector is
originally developed in [29] for real-valued observation and its
detection performance has not yet been analyzed, which is the
major contribution of this work. In particular, by computing
the first and second moments for the signal-absence and
signal-presence hypotheses together with using the Gamma
distribution approximation, we derive accurate analytic
formulae for the false-alarm and detection probabilities for the
scenario of IID noise. This enables us to develop the theoretical
decision threshold for practical primary signal detection as well
as receiver operating characteristic (ROC) for performance
evaluation.

The remainder of the paper is organized as follows. Section II
presents the problem formulation, including the signal model
as well as relevant sensing solution. Performance analysis of
the volume-based method is provided in Section III. Simulation
results are presented in Section IV. Finally, conclusions are
drawn in Section V.

Throughout this paper, we use boldface uppercase letter to
denote matrix, boldface lowercase letter for column vector,
and lowercase letter for scalar quantity. Superscripts (·)T and
(·)H represent transpose and conjugate transpose, respectively.
The E[a] and â denote the expected value and estimate of
a, respectively. The |A| is the determinant of A, diag(·)
stands for a diagonal matrix and IM represents the M ×M
identity matrix. The x ∼ N (μ,Σ) means x follows a complex
Gaussian distribution with mean μ and covariance matrix Σ,
and ∼ signifies “distributed as.” The R ∼ WM (N,Σ) denotes
a complex Wishart distribution with N degrees of freedom and
associated covariance matrix Σ. The aij stands for the (i, j)
element of A and A � B means that A−B is a positive
definite matrix.

II. PROBLEM FORMULATION

A. Signal Model

Consider the standard signal model where a SU with M
antennas tries to detect the signals emitted by d PUs with single
antenna:

xt = Hst + nt. (1)

Here, H ∈ C
M×d denotes the channel matrix between the PUs

and SU, which is unknown deterministic during the sensing
period, and the

xt = [x1(t), . . . , xM (t)]T (2)

st = [s1(t), . . . , sd(t)]
T (3)

nt = [n1(t), . . . , nM (t)]T (4)

are the observation, signal and noise vectors, respectively.
Suppose that si(t) ∼ N (0, σ2

si
)(i = 1, . . . , d) with σ2

si
being

the ith unknown signal variance, and that ni(t) ∼ N (0, τi)(i =
1, . . . ,M) with τi being the unknown noise variance. Note that
τi is not necessarily equal to τj for i �= j in practice, which
corresponds to the case of uncalibrated receiver. Furthermore,
we assume that the noises are statistically independent of each
other and also independent of the signals. In the signal-absence
hypothesis H0, the population covariance matrix of the obser-
vation xt is Σ = E[xtx

H
t ] = diag(τ1, . . . , τM ). However, the

presence of primary signals destroys this diagonal structure,
leading to

Σ = HΣsH
H + diag(τ1, . . . , τM ) (5)

where Σs = E[sts
H
t ]. Therefore, the spectrum sensing issue is

cast as the binary hypothesis test:

H0 : Σ =diag(τ1, . . . , τM ) (6)

H1 : Σ � diag(τ1, . . . , τM ) (7)

where H1 denotes the signal-presence hypothesis. The problem
at hand is to test Σ = diag(τ1, . . . , τM ) for a null hypothesis
against all any other possible alternatives of Σ by using the
noisy observations X = [x1, . . . ,xN ]. Here, N denotes the
number of samples which, without loss of generality, is as-
sumed to be not less than the number of antennas, i.e., N ≥ M .

B. Sensing Solution

The determinant of Σ is the hyper-volume of the geometry
determined by the row vectors of Σ. For example, consider
the situation of three receiving antennas where the observed
data with zero mean and unity variance can be independent,
correlated or coherent. The corresponding covariance matrices
turn out to be the 3 × 3 identity matrix, full-rank non-identity
matrix and rank-one arbitrary matrix. Fig. 1 plots these ge-
ometries, namely, cube, parallelepiped and line, formed by the
row vectors of the matrices. We assume that all edges of the
geometries are unity such that ‖Σ(i, :)‖ = 1 where Σ(i, :) is
the i-th row of Σ and ‖ · ‖ is the Euclidean norm. Moreover,
the volumes of the cube, parallelepiped and line, are denoted by
v1, v2 and v3, respectively. The cube is referring to the situation
of signal-absence while the other two geometries correspond
to the scenario of signal-presence. For the situation of signal
absence, the covariance matrix is a 3 × 3 identity matrix,
meaning that v1 = 1. For the scenario of signal presence, never-
theless, the structure of diagonal matrix is destroyed, resulting
in significant volume reduction. Therefore, the volume is able
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Fig. 1. Volume comparison for uncorrelated, correlated and coherent observations. (a) v1 = 1; (b) v2 < v1; (c) v1 = 0.

to differentiate the primary signals from the background noise,
providing a new approach for accurate spectrum sensing.

In the signal-absence situation, the elements of x(k), i.e.,
xi(t), t = 1, . . . , N , i = 1, . . . ,M , are statistically indepen-
dent. To utilize the correlation structure for practical spectrum
sensing, we need to calculate the sample covariance matrix
(SCM) rather than the population covariance matrix Σ, which
is given as

S =
1

N

N∑
t=1

xtx
T
t . (8)

Moreover, the edge lengths of the row vectors of the SCM
are computed as ρi = ‖S(i, :)‖(i = 1, . . . ,M). Setting D =
diag(ρ1, . . . , ρM ), the volume of the geometry with unity edge
is |D−(1/2)SD−(1/2)|. Consequently, we have

ξVOL
Δ
=

|S|
|D| . (9)

For the scenario of signal-absence, D−(1/2)SD−(1/2) asymp-
totically approaches the identity matrix as the number of sam-
ples tends to infinity, leading to the volume of one. For the
situation of signal-presence, however, the correlation structure
leads to notable reduction in |S| but considerable increase in
|D|, eventually leading to significant reduction of the total
volume and thereby providing a good indication for the primary
signals. Therefore, compared with a predetermined threshold
γVOL, the statistic is able to yield the detection of the PUs.
That is

ξVOL

H0

≷
H1

γVOL. (10)

It is worth pointing out that the volume-based detector offers
the same expression as the Hadamard ratio test but with a
different diagonal matrix in the denominator. The Hadamard
ratio rule is given as

ξHDM
Δ
=

|S|
|G|

H0

≷
H1

γHDM (11)

where G = diag(r11, . . . , rMM ) with rii(i = 1, . . . ,M)
being the main diagonal elements of S. Noting that
D−(1/2)SD−(1/2) and G−(1/2)SG−(1/2) asymptotically
are an identity matrix under H0, the decision threshold γVOL

is approximately equal to γHDM. On the other hand, ρi is
much larger than rii due to the correlation structure, making

Fig. 2. PDF versus threshold. M = 4, d = 3 and SNR = [−2,−3,−4] dB.
(a) N = 5000. (b) N = 50.

ξVOL to be much smaller than ξHDM under H1. Therefore,
the volume-based approach is able to employ the correlation
structure to further enhance the detection performance.

To illustrate the different behaviors of the volume-based and
Hadamard ratio approaches, the empirical probability density
functions (PDFs) of the test statistics for these two methods
are plotted in Fig. 2, where the number of antennas is 4, three
primary signals with powers of [−2,−3,−4] dB are assumed
to exist in the sensed channel and the noise is IID with unity
power. In Fig. 2(a), the number of samples is sufficiently large,
i.e., N = 5000, so that the SCM is the very accurate estimate
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of the population covariance matrix. For the signal-absence
situation, the covariance matrix is an identity matrix, which in
turn means that the PDF of ξVOL is equal to that of ξHDM,
as validated in Fig. 2(a). Moreover, it is seen that the PDF
under H1, denoted as p1, is much farther away from the PDF
under H0, denoted as p0, of the volume-based detector than that
of the Hadamard ratio scheme. Indeed, the Kullback-Leibler
(KL) distance between p0 and p1 is calculated as D(p1‖p0) =∑Q

i=1 p1(i) log(p1(i)/p0(i)) with Q = 200, which is DVOL =
7.8659 for the volume-based algorithm and DHDM = 4.3039
for the Hadamard ratio approach. The larger KL distance results
in considerable enhancement in detection performance for the
volume-based algorithm. When the number of samples be-
comes small, say, N = 50, the SCM is the inaccurate estimate
of the population one. The corresponding numerical results
are depicted in Fig. 2(b). Accordingly, the KL distance of the
volume-based approach is DVOL = 84.0485 whereas the KL
distance of the Hadamard ratio method is DHDM = 59.0912.
Here, we set Q = 50. It is seen that the volume-based approach
is still superior to the Hadamard ratio testing because it provides
a larger KL distance than the latter. This thereby implies that the
volume-based algorithm is able to correctly detect the PUs with
higher probability than the Hadamard ratio approach especially
in small sample and low SNR situations.

To easy the theoretical analysis, the volume-based test statis-
tic is modified as

ξ
Δ
= − log

|S|
|D|

H0

≷
H1

γ. (12)

where γ is the decision threshold of the volume-based de-
tector. Note that the volume-based test statistic in (12) has
been derived in [29] for accurate and robust spectrum sensing.
Nevertheless, its theoretical performance analysis has not yet
been investigated. In the next section, exploiting the Gamma
distribution approximation, accurate analytic formulae are de-
rived for the false-alarm probability, detection probability, the-
oretical decision threshold as well as ROC. This enables us
to accurately determine the theoretical decision threshold for
practical spectrum sensing. Moreover, the analytic expression
for the probability of detection can be employed to evaluate the
detection performance of the volume-based approach.

III. PERFORMANCE ANALYSIS

In this section, analytic formulae for the false-alarm proba-
bility, detection probability, decision threshold as well as ROC
are derived by assuming the additive noise is IID. Note that
|S|/|D| ∈ [0, 1] while −log(|S|/|D|) ∈ [0,∞). Therefore, we
employ the Gamma approximation with the same support by
means of moment matching to determine the distributions of
ξVOL under H0 and H1. Since the computation of the first two
moments under the signal-absence hypothesis is the simplified
case of that under the signal-presence hypothesis, we will first
address the detection probability of the volumed-based method.

A. Detection Probability

Let p1(y) be the PDF of the statistic variable ξ under H1,
which is determined by the following proposition.

Proposition 1: For any antenna number M and sample num-
ber N with N ≥ M , the two-first-moment Gamma approxima-
tion to the PDF of ξ under H1 is

p1(y) ≈
yα1−1β−α1

1 e−
y
β1

Γ(α1)
, y ∈ [0,∞) (13)

where Γ(·) is the complete Gamma function and

α1 =
μ2
1

ν21
(14a)

β1 =
ν21
μ1

(14b)

with μ1 and ν1 being the second-order approximation to the
mean of ξ and the first-order approximations to the variance of
ξ, whose computations are provided in (A.4).

Proof: The proof is seen in Appendix A. �
It follows from Proposition 1 that the detection probability is

computed as

Pd(γ)
Δ
= Prob(ξ < γ|H1) = F (γ;α1, β1) (15)

provided that the population covariance matrix Σ is given.
Here, F (γ;α1, β1) is the cumulative distribution function
(CDF) of Gamma distribution. From the constant false-alarm
rate (CFAR) perspective, the decision threshold γ usually is
determined under the signal-absence hypothesis, which must be
deterministic and independent of the noise variance.

B. False Alarm Probability

The false-alarm probability can be easily determined by the
following proposition.

Proposition 2: For any antenna number M and sample num-
ber N with N ≥ M , the two-first-moment Gamma approxima-
tion to the PDF of ξ under H0 is

p0(y) ≈
yα0−1β−α0

0 e−
y
β0

Γ(α0)
, y ∈ [0,∞) (16)

where

α0 =
μ2
0

ν20
(17a)

β0 =
ν20
μ0

(17b)

with μ0 and ν0 being the second order approximation to the
mean of ξ and the first order approximations to the variance of
ξ, whose calculation are given in (B.1).

Proof: The proof is seen in Appendix B. �
It follows from Proposition 2 that the false-alarm probability

is determined as

Pfa(γ)
Δ
= Prob(ξ < γ|H0) = F (γ;α0, β0). (18)

Inversely, given a false-alarm probability Pfa, the deci-
sion threshold can be obtained by numerically inverting
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F (γ;α0, β0). That is,

γ = F−1(Pfa;α0, β0) (19)

where F−1(·) represents the inverse function of F (·). On the
other hand, with the so-obtained threshold, the correspond-
ing detection probability is computed by (15). The mapping
between the false-alarm probability and detection probability
yields the ROC. Hence, the analytic ROC formula for the
volume-based test is

Pd = F
[
F−1(Pfa;α0, β0);α1, β1

]
. (20)

Remark: Note that the IID noise assumption is not required
for the volume-based detector but necessary for theoretically
deriving the decision threshold, which under the non-IID noise
scenario can alternatively be determined by the Monte-Carlo
simulation. Nevertheless, it is quite hard to calculate the the-
oretical threshold of the volume-based approach for non-IID
noise, which will be studied in our future work. On the other
hand, recall that the volume-based method involves the compu-
tations of SCM and determinant, requiring about O(M2N +
M3) flops. Some computationally simpler schemes, such as
[33]–[36], might be adopted to alleviate the computational
intensity of the volume-based approach, which will be our
future work.

IV. NUMERICAL RESULTS

Simulation results are presented in this section to validate
our derived analytic false-alarm and detection probabilities.
Moreover, the superiority of the volume-based approach over
the representative approaches for spectrum sensing under the
IID and non-IID noise conditions are demonstrated.

A. Analytic False Alarm and Detection Probabilities

In this subsection, the accuracy of the analytic formulae
for the false-alarm and detection probabilities is numerically
evaluated. For the purpose of comparison, the exact false-
alarm and detection probabilities, which are empirically deter-
mined by 105 Monte Carlo simulation trials, are presented as
well. Fig. 3(a) plots the false-alarm probability versus decision
threshold in the presence of IID noise, where the number
of antennas is M = 4 whereas the number of samples is set
as N = [100, 200, 400]. It is indicated in Fig. 3(a) that the
proposed Gamma approximate false-alarm probability is very
accurate in terms of fitting the empirical false-alarm probability
for IID noise. The simulation results for the derived Gamma ap-
proximate and empirical false-alarm probabilities are depicted
in Fig. 3(b) for M = 6 and N = [200, 400, 600]. It is observed
that the Gamma approximate Pfa is very close to the exact one.
This in turn implies that the derived false-alarm probability
provides accurate theoretical threshold calculation for practical
spectrum sensing.

Now let us examine the accuracy of the detection probability
for the proposed Gamma approximation. Similarly, the exact
detection probability empirically determined by 105 Monte-
Carlo simulations are also presented for comparison. In the

Fig. 3. False alarm probability versus threshold in IID noise. (a) M = 4 and
N varies from 100, 200 to 400. (b) M = 6 and N varies from 200, 400 to 600.

presence of primary signals, the Rayleigh-fading channel is
adopted to evaluate the accuracy of the derived Gamma ap-
proximate Pd, which has been well studied in [37]–[40]. It
is shown in [38] that, in the Rayleigh-fading situation, the
columns of the channel matrix H follow a complex Gaussian
distribution with mean zero and covariance matrix Ψ due to the
correlation among the signals at the receiving antennas which
cannot be sufficiently spaced for physical size constraints. As
is indicated in [37], [38], [40], the correlated Rayleigh-fading
channel model is able to precisely characterize the behavior
of the practical channels. The (k, 
) entry of Ψ is determined
as [38, Eq.(27)]

φk� =
I0
(√

κ2 − 4π2d2k� + j4πκ sin(ψ)dk�

)
I0(κ)

,

(k, 
 = 1, . . . ,M) (21)

where I0(·) denotes the zero-order modified Bessel function,
κ controls the width of the angles-of-arrival (AOAs) of the
primary signals impinging upon the receiving antennas of the
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Fig. 4. Detection probability versus threshold for three primary signals in IID
noise. σ2

s1
= −5 dB. (a) M = 4 and N varies from 100, 200 to 300. (b) M =

6 and N varies from 200, 300 to 400.

SU, which can vary from 0 (isotropic scattering) up to ∞
(extremely non-isotropic scattering), ψ ∈ [−π, π) represents
the mean direction of the AOAs, and dk� stands for the distance,
which is normalized with respect to the wavelength λ, between
the k-th and 
-th antennas of the SU. In the simulation, we
set κ = 80 and ψ = π/2, and suppose that the antennas of
the SU are of the linear uniform array structure with the
inter-element distance being λ/2. As a result, the normalized
distance between the adjacent antennas equals 0.5. Without loss
of generality, the channel is normalized as gi = hi/‖hi‖ and
the noise variance is set to one for IID noise.

Fig. 4(a) demonstrates the numerical results for a single
primary signal in the Rayleigh fading channel and under the
situation of IID noise. Here, the number of antennas is 4, the
number of samples increases from 100, 200 to 300, and
the power of the primary signal is set as −5 dB. It is implied that
the derived detection probability is able to accurately predict the
detection performance for the volume-based approach. Fig. 4(b)
plots the Gamma approximate and exact detection probability
of the volume-based detection method for IID noise, where the

Fig. 5. Detection probability versus threshold for three primary signals in IID
noise. [σ2

s1
, σ2

s2
, σ2

s3
] = [−2,−3,−4] dB. (a) M = 4 and N varies from 100,

200 to 400. (b) M = 6 and N varies from 200, 400 to 800.

number of antennas is 6, the number of samples increases from
200, 300 to 400, and the signal power is the same as that in
Fig. 4(a). The numerical results again validate the efficiency
of the derived Gamma approximate Pd. The numerical results
for three primary signals with powers of [−2,−3,−4] dB are
plotted in Fig. 5. The number of antennas is 4 and the number
of samples is set as [100, 200, 400] in Fig. 5(a). We can observe
that the proposed Gamma approximate detection probability is
quite precise in terms of fitting the exact one. In Fig. 5(b), the
number of antennas and number of samples are set as M = 6
and N = [200, 400, 800], respectively. It is observed that the
derived Pd is very accurate in terms of predicting the detection
performance for the volume-based algorithm.

B. Detection Performance

In this subsection, let us evaluate the robustness as well as
accuracy of the volume-based detection algorithm for complex-
valued observed data by comparing its empirical ROC with
those of other representative methods. In particular, the decision
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threshold is varied to calculate the false-alarm probability and
its corresponding detection probability, leading to the ROC
curve. For the purpose of comparison, the numerical results
of the John’s, AGM (or ST), Hadamard ratio as well as ED
detectors are provided. Recalling that the true noise variance is
unknown a priori to the receiver in practice, the ED approach is
thereby used herein as the benchmark. In addition, the Rayleigh
fading channel model addressed above is employed. All the
numerical results are obtained from 105 Monte Carlo trials.

The ROCs of the volume-based, AGM, John’s, Hadamard
ratio and ED algorithms in Rayleigh fading channel and IID
noise are demonstrated in Fig. 6, where the number of antennas
equals 4. It is indicated from Fig. 6(a), where the number
of samples is 10, the number of primary signals is one and
its power equals 8 dB, that the volume-based approach is
superior to the AGM and Hadamard ratio methods but inferior
to John’s detector which is known to be the locally most
powerful invariant test for sphericity. Moreover, all of them
are inferior to the true noise variance based ED approach. The
similar results are observed in Fig. 6(b), where the numbers
of antennas and samples remain unchanged while the number
of primary signals increases to three and their powers are set
as [σ2

s1
, σ2

s2
, σ2

s3
] = [5, 2, 0] dB. This indicates that the volume-

based detector surpasses the AGM and Hadamard ratio methods
but is not as accurate as John’s approach in the scenario
of IID noise. However, as the sample number increases to
50, the volume-based algorithm is able to provide the same
accuracy as John’s algorithm which has been proved to be
the most powerful for the small sample case. The numerical
results for the same signal parameters and channel model but
different noise model, namely, the non-IID noise, are plotted
in Fig. 7, where the noise variances are [1, 1.7,−0.7,−2] dB
and the averaged noise variance is equal to one. Under such a
non-IID noise condition, the volume-based detector is capable
of offering the best detection performance among the blind
methods. This in turn implies that the volume-based approach
is superior to the Hadamard ratio method in accuracy and to the
AGM and John’s schemes in robustness against the deviation
of IID noise. As pointed out in Section II-B, the Hadamard
ratio algorithm cannot utilize the correlation among the primary
signals to improve the detection accuracy although it is robust
against the non-IID noise. Unlike the Hadamard ratio approach,
the denominator in the volume-based test expression consid-
erably increases while the numerator, i.e., the determinant of
covariance matrix, significantly decreases due to the signal
correlation, finally resulting in notable reduction in the total
volume. This is why the volume-based test scheme is able to
provide the superiority over the Hadamard ratio method. As
the AGM and John’s detectors are derived from the assumption
of IID noise, they cannot provide the robustness against the
non-IID noise.

The ROCs of various algorithms for M = 6 and IID noise
are depicted in Fig. 8. Similar to the numerical results in
Fig. 6, the volume-based method is superior to the AGM and
Hadamard ratio schemes but inferior to John’s scheme in de-
tection performance. The numerical results of various methods
for M = 6 and non-IID noise are shown in Fig. 9, where the
noise powers are set as [−1.2,−0.3, 2.6,−0.8, 2.4,−2.7] dB.

Fig. 6. ROCs of various detectors for Rayleigh fading channel in IID
noise. (a) M = 4, N = 10, d = 1, and σ2

s1
= 8 dB. (b) M = 4, N = 10,

d = 3, and [σ2
s1
, σ2

s2
, σ2

s3
] = [5, 2, 0] dB. (c) M = 4, N = 50, d = 3, and

[σ2
s1
, σ2

s2
, σ2

s3
] = [0,−3,−5] dB.

Again, it is seen in Fig. 9 that the volume-based detector out-
performs the robust Hadamard ratio test and non-robust AGM
as well as John’s approaches in detection accuracy. Moreover,
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Fig. 7. ROCs of various detectors for Rayleigh fading channel in non-IID
noise. (a) M = 4, N = 10, d = 1, and σ2

s1
= 8 dB. (b) M = 4, N = 10,

d = 3, and [σ2
s1
, σ2

s2
, σ2

s3
] = [5, 2, 0] dB. (c) M = 4, N = 30, d = 3, and

[σ2
s1
, σ2

s2
, σ2

s3
] = [0,−3,−5] dB.

for M = 6, N = 30, and [σ2
s1
, σ2

s2
, σ3

s3
] = [0,−3,−5] dB, the

volume-based algorithm is even superior to the ED scheme, as
illustrated in Fig. 9(c).

Fig. 8. ROCs of various detectors for Rayleigh fading channel in IID
noise. (a) M = 6, N = 10, d = 1, and σ2

s1
= 8 dB. (b) M = 6, N = 10,

d = 3, and [σ2
s1
, σ2

s2
, σ2

s3
] = [5, 2, 0] dB. (c) M = 6, N = 50, d = 3, and

[σ2
s1
, σ2

s2
, σ2

s3
] = [0,−3,−5] dB.

V. CONCLUSION

The analytic formulae for the false-alarm and detection
probabilities of the volume-based approach have been derived
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Fig. 9. ROCs of various detectors for Rayleigh fading channel in non-IID
noise. (a) M = 6, N = 10, d = 1, and σ2

s1
= 8 dB. (b) M = 6, N = 10,

d = 3, and [σ2
s1
, σ2

s2
, σ2

s3
] = [5, 2, 0] dB. (c) M = 6, N = 50, d = 3, and

[σ2
s1
, σ2

s2
, σ2

s3
] = [0,−3,−5] dB.

for the IID noise, which provide accurate theoretical threshold
calculation and efficient approach to evaluate its sensing per-
formance. By means of calculating the accurate first and second

moments of the test statistic under the signal-absence hypoth-
esis, we are able to employ the moment-matching method to
accurately derive the Gamma distribution. Accordingly, the
theoretical decision threshold can be accurately determined
as well. On the other hand, by computing the accurate first-
and second-order moments of the test statistic under the
signal-presence hypothesis, we are capable of approximating
the Gamma distribution for the volume-based test statistic,
ending up with accurate analytic expression for the detection
probability. Extensive numerical results validate our theoretical
analysis.

As has been pointed out in Sections I and IV-A, it is quite
difficult to derive the false-alarm probability of the volume-
based detector for the non-IID noise situations because the
noise covariance matrix is unknown in practice. More specif-
ically, the noise covariance matrix can be diagonal for non-
uniform spatially white noise but arbitrary for spatially color
noise. Derivation of the analytic false-alarm probability of the
volume-based method in these non-IID noise scenarios will be
our future work.

APPENDIX A
PROOF OF PROPOSITION 1

Let R = NS =
∑N

t=1 xtx
H
t , which under H1 follows the

complex Wishart distribution, i.e., R ∼ WM (N,Σ). Setting
�k =

∑M
i=1 |rki|2 with rki being the (k, i) entry of R, it follows

from (12) that the volume-based test statistic becomes

ξ =
1

2

M∑
k=1

log �k − log |R|. (A.1)

We utilize the Delta method to approximately calculate the first
two moments of ξ. To proceed, we need to the following results
of complex Bartlett decomposition thanks to Goodman [41].

Lemma 1: Let R′ ∼ WM (N, IM ) and R′ = TTH where
T = (tij) is a complex lower triangular matrix with real and
positive diagonal elements, i.e., tii > 0, and non-diagonal el-
ements tij = tRij + jtIij (j > i) with R

ij and I
ij being the real

and imaginary parts of ij , respectively. Then, the elements of
T are all independent, 2tii ∼ χ2

2(N−i+1) (1 ≤ i ≤ M) with

χ2 being chi-square distribution and tRij ∼ N (0, 1/2), tIij ∼
N (0, 1/2)(1 ≤ j < i ≤ M).

According to Lemma 1, R can be represented in the form
of R = ATTHAH with A = Σ1/2. Then, the Taylor series
expansion of

ξ
Δ
= f(T ) =

1

2

M∑
k=1

log �k − 2 log |T | − 2 log |A| (A.2)

in the neighborhood of the means of tii, tRij and tIij for 1 ≤ j <
i ≤ M is given in (A.3), shown at the bottom of the next page.
In the sequel, the second-order approximation to the mean of ξ,

denoted as μ1
Δ
= E[ξ], is

μ1 ≈ f(T )|T=E[T ]

+
1

2

⎡
⎣ M∑

j<i

∂2f

∂
(
tRij
)2 |T=E[T ]Var

(
tRij
)
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+

M∑
j<i

∂2f

∂
(
tIij
)2 |T=E[T ]Var

(
tIij
)

+
M∑
i=1

∂2f

∂ (tii)
2 |T=E[T ]Var (tii)

]
. (A.4a)

Additionally, the first-order approximation to the variance of ξ,

denoted as ν1
Δ
= Var[ξ], is

ν1 ≈
M∑
j<i

∂f

∂tRij

∣∣∣∣∣∣
T=E[T ]

Var
(
tRij
)
+

M∑
j<i

∂f

∂tIij

∣∣∣∣∣∣
T=E[T ]

Var
(
tIij
)

+

M∑
i=1

∂f

∂tii

∣∣∣∣∣
T=E[T ]

Var (tii) . (A.4b)

We are now at a position to determine the first two moments
of the elements of T , and the first and second-order partial
derivatives of f(T ) with respect to the elements of T . It follows
from Lemma 1 that

E
[
tRij
]
=E

[
tIij
]
= 0 (1 ≤ j < i ≤ M) (A.5a)

Var
[
tRij
]
=Var

[
tIij
]
=

1

2
(1 ≤ j < i ≤ M) (A.5b)

E [tii] =
Γ(n− i+ 3

2 )

Γ(n− i+ 1
2 )

(1 ≤ i ≤ M) (A.5c)

Var[tii] =n− i+ 1−
(
Γ(n− i+ 3

2 )

Γ(n− i+ 1
2 )

)2

(1 ≤ i ≤ M).

(A.5d)

On the other hand, the first-order partial derivatives of f(T )
with respect to tRij , tIij , and tii are computed in (A.6), shown
at the bottom of the page. In addition, the second-order partial
derivatives of f(T ) with respect to tRij , tIij , and tii are calculated
by (A.7), shown at the bottom of the next page. Here, the first-
order partial derivatives of rRij and rIij with respect to tRij , tIij ,
and tii are given, respectively, as

∂rRk�
∂tRij

=
(
aRika

R
j� + aIika

I
j�

)
E[tii] (A.8a)

∂rRk�
∂tIij

=
(
aIika

R
j� − aRika

I
j�

)
E[tii] (A.8b)

f(T )≈f(T )|T=E[T ]+

M∑
j<i

∂f

∂tRij

∣∣∣∣∣
T=E[T ]

(
tRij − E

[
tRij
])
+

M∑
j<i

∂f

∂tIij

∣∣∣∣∣
T=E[T ]

(
tIij−E

[
tIij
])
+

M∑
i=1

∂f

∂tij

∣∣∣∣
T=E[T ]

(tij−E [tij ])

+
1

2

⎡
⎢⎣ M∑

p<q

M∑
j<i

∂2f

∂tRij∂t
R
pq

∣∣∣∣∣∣
T=E[T ]

(
tRij−E

[
tRij
]) (

tRpq−E
[
tRpq
])

+
M∑
p<q

M∑
j<i

∂2f

∂tIij∂t
I
pq

∣∣∣∣∣∣
T=E[T ]

(
tIij − E

[
tIij
]) (

tIpq − E
[
tIpq
])

+
M∑
p=1

M∑
i=1

∂2f

∂tpp∂tii

∣∣∣∣∣
T=E[T ]

(tpp − E [tpp]) (tii − E [tii]) + 2
M∑
p<q

M∑
j<i

∂2f

∂tRij∂t
I
pq

∣∣∣∣∣∣
T=E[T ]

(
tRij − E

[
tRij
]) (

tIpq − E
[
tIpq
])

+ 2

M∑
p=1

M∑
j<i

∂2f

∂tRij∂tpq

∣∣∣∣∣∣
T=E[T ]

(
tRij−E

[
tRij
])

(tpp−E [tpp]) + 2

M∑
p=1

M∑
j<i

∂2f

∂tIij∂tpq

∣∣∣∣∣∣
T=E[T ]

(
tIij − E

[
tIij
])

(tpp − E [tpp])

⎤
⎥⎦

(A.3)

∂f

∂tRij

∣∣∣∣∣
T=E[T ]

=
1

2

M∑
k=1

M∑
�=1,k �=�

[
2rRk�
�k

∂rRk�
∂tRij

+
2rIk�
�k

∂rIk�
∂tRij

]
+

1

2

M∑
k=1

2rkk
�k

∂rkk
∂tRij

(A.6a)

∂f

∂tIij

∣∣∣∣∣
T=E[T ]

=
1

2

M∑
k=1

M∑
�=1,k �=�

[
2rRk�
�k

∂rRk�
∂tIij

+
2rIk�
�k

∂rIk�
∂tIij

]
+

1

2

M∑
k=1

2rkk
�k

∂rkk
∂tIij

(A.6b)

∂f

∂tii

∣∣∣∣
T=E[T ]

=
1

2

M∑
k=1

M∑
�=1,k �=�

[
2rRk�
�k

∂rRk�
∂tii

+
2rIk�
�k

∂rIk�
∂tii

]
+

1

2

M∑
k=1

2rkk
�k

∂rkk
∂tii

− 2

E[tii]
(A.6c)
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∂rRk�
∂tii

=2
(
aRika

R
i� + aIika

I
i�

)
E[tii] (A.8c)

and

∂rIk�
∂tRij

=
(
aRika

I
j� − aIika

R
j�

)
E[tii] (A.8d)

∂rIk�
∂tIij

=
(
aRika

R
j� + aIika

I
j�

)
E[tii] (A.8e)

∂rIk�
∂tii

=2
(
aIika

R
j� − aRika

I
j�

)
E[tii]. (A.8f)

Moreover, the second-order partial derivatives of rRij and rIij
with respect to tRij , tIij and tii are given, respectively, as

∂2rRk�

∂
(
tRij
)2 =2

(
aRika

R
i� + aIika

I
i�

)
(A.8g)

∂2rRk�∂
(
tIij
)2

=2
(
aRika

R
i� + aIika

I
i�

)
(A.8h)

∂2rRk�
∂t2ii

=2
(
aRika

R
i� − aIika

I
i�

)
(A.8i)

∂2f

∂
(
tRij
)2
∣∣∣∣∣
T=E[T ]

=
1

2

M∑
k=1

M∑
�=1,k �=�

⎧⎨
⎩

M∑
p=1,p �=k,p �=�

[
4rRk�r

R
kp

�2k

∂rRk�
∂tRij

∂rRkp
∂tRij

+
4rRk�r

I
kp

�2k

∂rRk�
∂tRij

∂rIkp
∂tRij

+
4rIk�r

R
kp

�2k

∂rIk�
∂tRij

∂rRkp
∂tRij

+
4rIk�r

I
kp

�2k

∂rIk�
∂tRij

∂rIkp
∂tRij

]

+
4rRk�rkk

�2k

∂rRk�
∂tRij

∂rkk
∂tRij

+
4rIk�rkk

�2k

∂rIk�
∂tRij

∂rkk
∂tRij

+
2�k − 4

(
rRk�
)2

�2k

(
∂rRk�
∂tRij

)2

+
2rRk�
�k

∂2rRk�

∂
(
tRij
)2

+
2�k − 4

(
rIk�
)2

�2k

(
∂rIk�
∂tRij

)2

+
2rIk�
�k

∂2rIk�

∂
(
tRij
)2 +1

2

M∑
k=1

⎡
⎣2�k − 4r2kk

�2k

(
∂rkk
∂tRij

)2

+
2rkk
�k

∂2rkk

∂
(
tRij
)2
⎤
⎦
⎫⎬
⎭

(A.7a)
∂2f

∂
(
tIij
)2
∣∣∣∣∣
T=E[T ]

=
1

2

M∑
k=1

M∑
�=1,k �=�

⎧⎨
⎩

M∑
p=1,p �=k,p �=�

[
4rRk�r

R
kp

�2k

∂rRk�
∂tIij

∂rRkp
∂tIij

+
4rRk�r

I
kp

�2k

∂rRk�
∂tIij

∂rIkp
∂tIij

+
4rIk�r

R
kp

�2k

∂rIk�
∂tIij

∂rRkp
∂tIij

+
4rIk�r

I
kp

�2k

∂rIk�
∂tIij

∂rIkp
∂tIij

]

+
4rRk�rkk

�2k

∂rRk�
∂tIij

∂rkk
∂tIij

+
4rIk�rkk

�2k

∂rIk�
∂tIij

∂rkk
∂tIij

+
2�k − 4

(
rRk�
)2

�2k

(
∂rRk�
∂tIij

)2

+
2rRk�
�k

∂2rRk�

∂
(
tIij
)2

+
2�k − 4

(
rIk�
)2

�2k

(
∂rIk�
∂tIij

)2

+
2rIk�
�k

∂2rIk�

∂
(
tIij
)2

+
1

2

M∑
k=1

⎡
⎣2�k − 4r2kk

�2k

(
∂rkk
∂tIij

)2

+
2rkk
�k

∂2rkk∂
(
tIij
)2⎤⎦
⎫⎬
⎭

(A.7b)
∂2f

∂t2ii

∣∣∣∣
T=E[T ]

=
1

2

M∑
k=1

M∑
�=1,k �=�

⎧⎨
⎩

M∑
p=1,p �=k,p �=�

[
4rRk�r

R
kp

�2k

∂rRk�
∂tii

∂rRkp
∂tii

+
4rRk�r

I
kp

�2k

∂rRk�
∂tii

∂rIkp
∂tii

+
4rIk�r

R
kp

�2k

∂rIk�
∂tii

∂rRkp∂tii +
4rIk�r

I
kp

�2k

∂rIk�
∂tii

∂rIkp
∂tii

]

+
4rRk�rkk

�2k

∂rRk�
∂tii

∂rkk
∂tii

+
4rIk�rkk

�2k

∂rIk�
∂tii

∂rkk
∂tii

+
2�k − 4

(
rRk�
)2

�2k

(
∂rRk�
∂tii

)2

+
2rRk�
�k

∂2rRk�∂t
2
ii

+
2�k − 4

(
rIk�
)2

�2k

(
∂rIk�
∂tii

)2

+
2rIk�
�k

∂2rIk�
∂t2ii

+
1

2

M∑
k=1

[
2�k − 4r2kk

�2k

(
∂rkk
∂tii

)2

+
2rkk
�k

∂2rkk
∂t2ii

]}
+

2

E2[tii]

(A.7c)
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and

∂2rIk�

∂
(
tRij
)2 =2

(
aIjka

R
j� − aRjka

I
j�

)
(A.8j)

∂2rIk�

∂
(
tIij
)2 =2

(
aIjka

R
j� − aRjka

I
j�

)
(A.8k)

∂2rIk�
∂t2ii

=2
(
aIika

R
i� − aRika

I
j�

)
. (A.8l)

Furthermore, we easily obtain

∂rkk
∂tRij

=
(
aRika

R
jk + aIika

I
jk

)
E[tii] (A.8m)

∂rkk
∂tIij

=
(
aIika

R
jk − aRika

I
jk

)
E[tii] (A.8n)

∂rkk
∂tii

=2
((

aRik
)2

+
(
aIik
)2)

E[tii] (A.8o)

and

∂2rkk

∂
(
tRij
)2 =2

((
aRjk
)2

+
(
aIjk
)2)

(A.8p)

∂2rkk

∂
(
tIij
)2 =2

((
aRjk
)2

+
(
aIjk
)2)

(A.8q)

∂2rkk
∂t2ii

=2
((

aRik
)2

+
(
aIik
)2)

. (A.8r)

Substituting (A.8) into (A.6) and (A.7), and then inserting the
so-obtained results along with (A.5) into (A.4), we eventually
attain the mean μ1 and variance ν1 for calculating α1 and β1 in
(14). This completes the proof of Proposition 1.

APPENDIX B
PROOF OF PROPOSITION 2

For the signal-absence hypothesis, we have A = IM . It
follows from (A.4) and (A.5) that the mean and variance of ξ
under H0, denoted by μ0 and ν0, respectively, can be given as

μ0 ≈ f(T )|T=E[T ] +
1

4

M∑
j<i

(
∂2f

∂
(
tRij
)2 +

∂2f

∂
(
tIij
)2
)∣∣∣∣∣∣

T=E[T ]

+
1

2

M∑
i=1

(
n− i+ 1−

(
Γ(n− i+ 3

2 )

Γ(n− i+ 1
2 )

)2
)

∂2f

∂ (tii)
2

∣∣∣∣∣
T=E[T ]

(B.1a)

and

ν0 ≈ 1

2

M∑
j<i

(
∂f

∂tRij
+

∂f

∂tIij

)∣∣∣∣∣∣
T=E[T ]

+

M∑
i=1

(
n− i+ 1−

(
Γ(n− i+ 3

2 )

Γ(n− i+ 1
2 )

)2
)

∂f

∂tii

∣∣∣∣∣
T=E[T ]

.

(B.1b)

where f(T ) = (1/2)
∑M

k=1 log �k − 2 log |T |. Moreover, it
follows from (A.6), (A.7), and (A.8) that the first and second-
order partial derivatives of f(T ) with respect to the elements of
T can be simplified, respectively, as

∂f

∂tRij

∣∣∣∣∣
T=E[T ]

=

(
rRij
�j

+
rRij
�i

)
∂rRij
∂tRij

(B.2a)

∂f

∂tIij

∣∣∣∣∣
T=E[T ]

=

(
rIij
�j

+
rIij
�i

)
∂rIij
∂tIij

(B.2b)

∂f

∂tii

∣∣∣∣
T=E[T ]

=
rii
�i

∂rii
∂tii

− 2

E[tii]
(B.2c)

and

∂2f

∂
(
tRij
)2
∣∣∣∣∣
T=E[T ]

=

(
�j−2

(
rRij
)2

�2j
+
�i−2

(
rRij
)2

�2i

)(
∂rRij
∂tRij

)2

+
rjj
�j

∂2rjj

∂
(
tRij
)2 (B.3a)

∂2f

∂
(
tIij
)2
∣∣∣∣∣
T=E[T ]

=

(
�j−2

(
rIij
)2

�2j
+
�i−2

(
rIij
)2

�2i

)(
∂rIij
∂tIij

)2

+
rjj
�j

∂2rjj

∂
(
tIij
)2 (B.3b)

∂2f

∂ (tii)
2

∣∣∣∣
T=E[T ]

=
�i−2r2ii

�2i

(
∂rii
∂tii

)2

+
rii
�i

∂2rii

∂ (tii)
2 +

2

E2[tii]

(B.3c)

where

∂rii
∂tii

=2
∂rRij
∂tRij

= 2
∂rIij
∂tIij

= 2E[tii] (B.4a)

∂2rjj

∂
(
tRij
)2 =

∂2rjj

∂
(
tIij
)2 =

∂2rii

∂ (tii)
2 = 2. (B.4b)

Thus, inserting (B.4) into (B.2) and (B.3), and then substituting
the so-obtained results into (B.1) yield μ0 and ν0 for computing
α0 and β0 in (17). The proof of Proposition 2 is finished.
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Performance Analysis of Volume-Based Spectrum
Sensing for Cognitive Radio
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Abstract—In this work, the volume-based method for spectrum
sensing is analyzed, which is able to provide the desirable prop-
erties of constant false-alarm rate, robustness against deviation
from independent and identically distributed (IID) noise and be-
ing free of noise uncertainty. By computing the first and second
moments for the signal-absence and signal-presence hypotheses
together with using the Gamma distribution approximation, we
derive accurate analytic formulae for the false-alarm and detection
probabilities for IID noise situations. This enables us to develop
theoretical decision threshold as well as receiver operating charac-
teristic. Numerical results are presented to validate our theoretical
findings.

Index Terms—Cognitive radio, spectrum sensing, volume,
Gamma distribution, multiple antenna.

I. INTRODUCTION

A S a fundamental element in cognitive radio (CR) [1], [2],
spectrum sensing has received much attention in the liter-

ature. Basically, a secondary (unlicensed) user (SU) is allowed
to borrow the frequency channels from the primary (licensed)
users (PUs) in the same CR network provided that it does not
cause intolerable interference to the latter. To maximize the
spectral utilization and minimize the harmful interference to
the PUs, the SU usually needs to employ multiple antennas to
reliably detect the PUs particularly at low signal-to-noise ratio
(SNR) and/or small samples [3], [4]. Nevertheless, the multi-
antenna receiver is typically uncalibrated or contains calibration
error in practice, thereby calling for robust methodologies for
spectrum sensing.

Numerous methodologies have been devised for spectrum
sensing in the literature, varying from non-blind approach to
blind approach. Basically, the non-blind algorithms need to
employ some a priori knowledge of the noise, signal or channel
to construct their test statistics, such as the energy detection
(ED) method [5]–[7] and feature detection approaches [8]–[11].
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With the known noise variance, it is proved that the ED method
is optimal for independent and identically distributed (IID)
observations. Nevertheless, its optimality cannot be guaran-
teed for the situation of unknown noise variance because it
is rather sensitive to the noise uncertainty in the estimated
noise variance, particularly for the non-IID noise. It is shown
in [10], [11] that the feature detector is robust against the
noise uncertainty and provide superior detection performance.
However, it usually suffers from synchronization errors and
frequency offsets in practical situations, thereby limiting its
applications. Indeed, the presence of primary signals not only
changes the energy in the observation data but the correlation
structure as well. The correlation structure inherent in the ob-
servation covariance matrix leads to the most spread-out eigen-
spectrum, providing a good indication for the primary signals.
In addition, unlike the ED and feature detection schemes, the
eigenvalue-based approach is free of the noise variance and
signal features, thereby being a blind detector. As a result, the
eigenvalue-based spectrum sensing approaches have received
much attention [3], [12]–[16]. As a generalized likelihood ratio
test (GLRT) variant, the spherical test (ST) detector [17] is
able to reliably identify the correlated signals embedded in
additive IID noise. In fact, the ST detector is equivalent to
the eigenvalue arithmetic-to-geometric mean (AGM) algorithm
[18]. Nevertheless, it is indicated in [19] that, as the locally
most powerful invariant test for sphericity, John’s detector [20]
is superior to the ST detector when the numbers of antennas and
samples tend to infinity at the same rate. As a matter of fact, the
spectrum sensing algorithms above are developed upon the IID
noise assumption and thereby not robust against the deviation
from the IID noise, which is quite relevant in the real-world
applications since the SU receiver is typically uncalibrated.
Even though the receiver can be calibrated, the calibration error
makes the thermal noise to be non-ideal IID to some extent,
which poses a big challenge for practical spectrum sensing.
Indeed, besides the non-IID noise, the radio frequency (RF) IQ
imbalance [21], [22] can also lead to performance degradation
for the spectrum sensing methods, which, however, is beyond
the scope of this paper.

Some approaches have been suggested for robust spectrum
sensing in the literature, such as the GLRT test [23], indepen-
dence test [24], Hadamard ratio test [25], [26], Gerschgorin
disk test [27], locally most powerful invariant test (LMPIT)
[28] and volume-based test approaches [29]. Being robust
against the non-IID noise and derived in the GLRT paradigm,
the Hadamard ratio approach [30]–[32] has received much
attention in the community of spectrum sensing, such as [25],
[26]. In this approach, spectrum sensing is cast as the issue of
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distinguishing between a diagonal matrix and an arbitrary
Hermitian matrix. A variant of the Hadamard ratio approach for
spectrum sensing has been proposed in [25], where the number
of PUs needs to be known a priori to the receiver, which, how-
ever, is not rational in the practical spectrum sensing situations.
On the other hand, the performance of the Hadamard ratio
algorithm for spectrum sensing has been analyzed in [23], [24].
However, as pointed out in [29], although the Hadamard ratio
test is robust against the non-IID noise, its detection perfor-
mance needs to be further enhanced. Unlike the Hadamard ratio
approach, the volume-based detector [29] is able to employ the
correlation among the primary signals to further increase the
denominator of the test statistic, leading to significant reduc-
tion in the test variable under the signal-presence hypothesis.
This eventually leads to considerable improvement in detection
performance for the volume-based approach.

It is worth pointing out that the volume-based detector is
originally developed in [29] for real-valued observation and its
detection performance has not yet been analyzed, which is the
major contribution of this work. In particular, by computing
the first and second moments for the signal-absence and
signal-presence hypotheses together with using the Gamma
distribution approximation, we derive accurate analytic
formulae for the false-alarm and detection probabilities for the
scenario of IID noise. This enables us to develop the theoretical
decision threshold for practical primary signal detection as well
as receiver operating characteristic (ROC) for performance
evaluation.

The remainder of the paper is organized as follows. Section II
presents the problem formulation, including the signal model
as well as relevant sensing solution. Performance analysis of
the volume-based method is provided in Section III. Simulation
results are presented in Section IV. Finally, conclusions are
drawn in Section V.

Throughout this paper, we use boldface uppercase letter to
denote matrix, boldface lowercase letter for column vector,
and lowercase letter for scalar quantity. Superscripts (·)T and
(·)H represent transpose and conjugate transpose, respectively.
The E[a] and â denote the expected value and estimate of
a, respectively. The |A| is the determinant of A, diag(·)
stands for a diagonal matrix and IM represents the M ×M
identity matrix. The x ∼ N (μ,Σ) means x follows a complex
Gaussian distribution with mean μ and covariance matrix Σ,
and ∼ signifies “distributed as.” The R ∼ WM (N,Σ) denotes
a complex Wishart distribution with N degrees of freedom and
associated covariance matrix Σ. The aij stands for the (i, j)
element of A and A � B means that A−B is a positive
definite matrix.

II. PROBLEM FORMULATION

A. Signal Model

Consider the standard signal model where a SU with M
antennas tries to detect the signals emitted by d PUs with single
antenna:

xt = Hst + nt. (1)

Here, H ∈ C
M×d denotes the channel matrix between the PUs

and SU, which is unknown deterministic during the sensing
period, and the

xt = [x1(t), . . . , xM (t)]T (2)

st = [s1(t), . . . , sd(t)]
T (3)

nt = [n1(t), . . . , nM (t)]T (4)

are the observation, signal and noise vectors, respectively.
Suppose that si(t) ∼ N (0, σ2

si
)(i = 1, . . . , d) with σ2

si
being

the ith unknown signal variance, and that ni(t) ∼ N (0, τi)(i =
1, . . . ,M) with τi being the unknown noise variance. Note that
τi is not necessarily equal to τj for i �= j in practice, which
corresponds to the case of uncalibrated receiver. Furthermore,
we assume that the noises are statistically independent of each
other and also independent of the signals. In the signal-absence
hypothesis H0, the population covariance matrix of the obser-
vation xt is Σ = E[xtx

H
t ] = diag(τ1, . . . , τM ). However, the

presence of primary signals destroys this diagonal structure,
leading to

Σ = HΣsH
H + diag(τ1, . . . , τM ) (5)

where Σs = E[sts
H
t ]. Therefore, the spectrum sensing issue is

cast as the binary hypothesis test:

H0 : Σ =diag(τ1, . . . , τM ) (6)

H1 : Σ � diag(τ1, . . . , τM ) (7)

where H1 denotes the signal-presence hypothesis. The problem
at hand is to test Σ = diag(τ1, . . . , τM ) for a null hypothesis
against all any other possible alternatives of Σ by using the
noisy observations X = [x1, . . . ,xN ]. Here, N denotes the
number of samples which, without loss of generality, is as-
sumed to be not less than the number of antennas, i.e., N ≥ M .

B. Sensing Solution

The determinant of Σ is the hyper-volume of the geometry
determined by the row vectors of Σ. For example, consider
the situation of three receiving antennas where the observed
data with zero mean and unity variance can be independent,
correlated or coherent. The corresponding covariance matrices
turn out to be the 3 × 3 identity matrix, full-rank non-identity
matrix and rank-one arbitrary matrix. Fig. 1 plots these ge-
ometries, namely, cube, parallelepiped and line, formed by the
row vectors of the matrices. We assume that all edges of the
geometries are unity such that ‖Σ(i, :)‖ = 1 where Σ(i, :) is
the i-th row of Σ and ‖ · ‖ is the Euclidean norm. Moreover,
the volumes of the cube, parallelepiped and line, are denoted by
v1, v2 and v3, respectively. The cube is referring to the situation
of signal-absence while the other two geometries correspond
to the scenario of signal-presence. For the situation of signal
absence, the covariance matrix is a 3 × 3 identity matrix,
meaning that v1 = 1. For the scenario of signal presence, never-
theless, the structure of diagonal matrix is destroyed, resulting
in significant volume reduction. Therefore, the volume is able
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Fig. 1. Volume comparison for uncorrelated, correlated and coherent observations. (a) v1 = 1; (b) v2 < v1; (c) v1 = 0.

to differentiate the primary signals from the background noise,
providing a new approach for accurate spectrum sensing.

In the signal-absence situation, the elements of x(k), i.e.,
xi(t), t = 1, . . . , N , i = 1, . . . ,M , are statistically indepen-
dent. To utilize the correlation structure for practical spectrum
sensing, we need to calculate the sample covariance matrix
(SCM) rather than the population covariance matrix Σ, which
is given as

S =
1

N

N∑
t=1

xtx
T
t . (8)

Moreover, the edge lengths of the row vectors of the SCM
are computed as ρi = ‖S(i, :)‖(i = 1, . . . ,M). Setting D =
diag(ρ1, . . . , ρM ), the volume of the geometry with unity edge
is |D−(1/2)SD−(1/2)|. Consequently, we have

ξVOL
Δ
=

|S|
|D| . (9)

For the scenario of signal-absence, D−(1/2)SD−(1/2) asymp-
totically approaches the identity matrix as the number of sam-
ples tends to infinity, leading to the volume of one. For the
situation of signal-presence, however, the correlation structure
leads to notable reduction in |S| but considerable increase in
|D|, eventually leading to significant reduction of the total
volume and thereby providing a good indication for the primary
signals. Therefore, compared with a predetermined threshold
γVOL, the statistic is able to yield the detection of the PUs.
That is

ξVOL

H0

≷
H1

γVOL. (10)

It is worth pointing out that the volume-based detector offers
the same expression as the Hadamard ratio test but with a
different diagonal matrix in the denominator. The Hadamard
ratio rule is given as

ξHDM
Δ
=

|S|
|G|

H0

≷
H1

γHDM (11)

where G = diag(r11, . . . , rMM ) with rii(i = 1, . . . ,M)
being the main diagonal elements of S. Noting that
D−(1/2)SD−(1/2) and G−(1/2)SG−(1/2) asymptotically
are an identity matrix under H0, the decision threshold γVOL

is approximately equal to γHDM. On the other hand, ρi is
much larger than rii due to the correlation structure, making

Fig. 2. PDF versus threshold. M = 4, d = 3 and SNR = [−2,−3,−4] dB.
(a) N = 5000. (b) N = 50.

ξVOL to be much smaller than ξHDM under H1. Therefore,
the volume-based approach is able to employ the correlation
structure to further enhance the detection performance.

To illustrate the different behaviors of the volume-based and
Hadamard ratio approaches, the empirical probability density
functions (PDFs) of the test statistics for these two methods
are plotted in Fig. 2, where the number of antennas is 4, three
primary signals with powers of [−2,−3,−4] dB are assumed
to exist in the sensed channel and the noise is IID with unity
power. In Fig. 2(a), the number of samples is sufficiently large,
i.e., N = 5000, so that the SCM is the very accurate estimate



4 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS

of the population covariance matrix. For the signal-absence
situation, the covariance matrix is an identity matrix, which in
turn means that the PDF of ξVOL is equal to that of ξHDM,
as validated in Fig. 2(a). Moreover, it is seen that the PDF
under H1, denoted as p1, is much farther away from the PDF
under H0, denoted as p0, of the volume-based detector than that
of the Hadamard ratio scheme. Indeed, the Kullback-Leibler
(KL) distance between p0 and p1 is calculated as D(p1‖p0) =∑Q

i=1 p1(i) log(p1(i)/p0(i)) with Q = 200, which is DVOL =
7.8659 for the volume-based algorithm and DHDM = 4.3039
for the Hadamard ratio approach. The larger KL distance results
in considerable enhancement in detection performance for the
volume-based algorithm. When the number of samples be-
comes small, say, N = 50, the SCM is the inaccurate estimate
of the population one. The corresponding numerical results
are depicted in Fig. 2(b). Accordingly, the KL distance of the
volume-based approach is DVOL = 84.0485 whereas the KL
distance of the Hadamard ratio method is DHDM = 59.0912.
Here, we set Q = 50. It is seen that the volume-based approach
is still superior to the Hadamard ratio testing because it provides
a larger KL distance than the latter. This thereby implies that the
volume-based algorithm is able to correctly detect the PUs with
higher probability than the Hadamard ratio approach especially
in small sample and low SNR situations.

To easy the theoretical analysis, the volume-based test statis-
tic is modified as

ξ
Δ
= − log

|S|
|D|

H0

≷
H1

γ. (12)

where γ is the decision threshold of the volume-based de-
tector. Note that the volume-based test statistic in (12) has
been derived in [29] for accurate and robust spectrum sensing.
Nevertheless, its theoretical performance analysis has not yet
been investigated. In the next section, exploiting the Gamma
distribution approximation, accurate analytic formulae are de-
rived for the false-alarm probability, detection probability, the-
oretical decision threshold as well as ROC. This enables us
to accurately determine the theoretical decision threshold for
practical spectrum sensing. Moreover, the analytic expression
for the probability of detection can be employed to evaluate the
detection performance of the volume-based approach.

III. PERFORMANCE ANALYSIS

In this section, analytic formulae for the false-alarm proba-
bility, detection probability, decision threshold as well as ROC
are derived by assuming the additive noise is IID. Note that
|S|/|D| ∈ [0, 1] while −log(|S|/|D|) ∈ [0,∞). Therefore, we
employ the Gamma approximation with the same support by
means of moment matching to determine the distributions of
ξVOL under H0 and H1. Since the computation of the first two
moments under the signal-absence hypothesis is the simplified
case of that under the signal-presence hypothesis, we will first
address the detection probability of the volumed-based method.

A. Detection Probability

Let p1(y) be the PDF of the statistic variable ξ under H1,
which is determined by the following proposition.

Proposition 1: For any antenna number M and sample num-
ber N with N ≥ M , the two-first-moment Gamma approxima-
tion to the PDF of ξ under H1 is

p1(y) ≈
yα1−1β−α1

1 e−
y
β1

Γ(α1)
, y ∈ [0,∞) (13)

where Γ(·) is the complete Gamma function and

α1 =
μ2
1

ν21
(14a)

β1 =
ν21
μ1

(14b)

with μ1 and ν1 being the second-order approximation to the
mean of ξ and the first-order approximations to the variance of
ξ, whose computations are provided in (A.4).

Proof: The proof is seen in Appendix A. �
It follows from Proposition 1 that the detection probability is

computed as

Pd(γ)
Δ
= Prob(ξ < γ|H1) = F (γ;α1, β1) (15)

provided that the population covariance matrix Σ is given.
Here, F (γ;α1, β1) is the cumulative distribution function
(CDF) of Gamma distribution. From the constant false-alarm
rate (CFAR) perspective, the decision threshold γ usually is
determined under the signal-absence hypothesis, which must be
deterministic and independent of the noise variance.

B. False Alarm Probability

The false-alarm probability can be easily determined by the
following proposition.

Proposition 2: For any antenna number M and sample num-
ber N with N ≥ M , the two-first-moment Gamma approxima-
tion to the PDF of ξ under H0 is

p0(y) ≈
yα0−1β−α0

0 e−
y
β0

Γ(α0)
, y ∈ [0,∞) (16)

where

α0 =
μ2
0

ν20
(17a)

β0 =
ν20
μ0

(17b)

with μ0 and ν0 being the second order approximation to the
mean of ξ and the first order approximations to the variance of
ξ, whose calculation are given in (B.1).

Proof: The proof is seen in Appendix B. �
It follows from Proposition 2 that the false-alarm probability

is determined as

Pfa(γ)
Δ
= Prob(ξ < γ|H0) = F (γ;α0, β0). (18)

Inversely, given a false-alarm probability Pfa, the deci-
sion threshold can be obtained by numerically inverting
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F (γ;α0, β0). That is,

γ = F−1(Pfa;α0, β0) (19)

where F−1(·) represents the inverse function of F (·). On the
other hand, with the so-obtained threshold, the correspond-
ing detection probability is computed by (15). The mapping
between the false-alarm probability and detection probability
yields the ROC. Hence, the analytic ROC formula for the
volume-based test is

Pd = F
[
F−1(Pfa;α0, β0);α1, β1

]
. (20)

Remark: Note that the IID noise assumption is not required
for the volume-based detector but necessary for theoretically
deriving the decision threshold, which under the non-IID noise
scenario can alternatively be determined by the Monte-Carlo
simulation. Nevertheless, it is quite hard to calculate the the-
oretical threshold of the volume-based approach for non-IID
noise, which will be studied in our future work. On the other
hand, recall that the volume-based method involves the compu-
tations of SCM and determinant, requiring about O(M2N +
M3) flops. Some computationally simpler schemes, such as
[33]–[36], might be adopted to alleviate the computational
intensity of the volume-based approach, which will be our
future work.

IV. NUMERICAL RESULTS

Simulation results are presented in this section to validate
our derived analytic false-alarm and detection probabilities.
Moreover, the superiority of the volume-based approach over
the representative approaches for spectrum sensing under the
IID and non-IID noise conditions are demonstrated.

A. Analytic False Alarm and Detection Probabilities

In this subsection, the accuracy of the analytic formulae
for the false-alarm and detection probabilities is numerically
evaluated. For the purpose of comparison, the exact false-
alarm and detection probabilities, which are empirically deter-
mined by 105 Monte Carlo simulation trials, are presented as
well. Fig. 3(a) plots the false-alarm probability versus decision
threshold in the presence of IID noise, where the number
of antennas is M = 4 whereas the number of samples is set
as N = [100, 200, 400]. It is indicated in Fig. 3(a) that the
proposed Gamma approximate false-alarm probability is very
accurate in terms of fitting the empirical false-alarm probability
for IID noise. The simulation results for the derived Gamma ap-
proximate and empirical false-alarm probabilities are depicted
in Fig. 3(b) for M = 6 and N = [200, 400, 600]. It is observed
that the Gamma approximate Pfa is very close to the exact one.
This in turn implies that the derived false-alarm probability
provides accurate theoretical threshold calculation for practical
spectrum sensing.

Now let us examine the accuracy of the detection probability
for the proposed Gamma approximation. Similarly, the exact
detection probability empirically determined by 105 Monte-
Carlo simulations are also presented for comparison. In the

Fig. 3. False alarm probability versus threshold in IID noise. (a) M = 4 and
N varies from 100, 200 to 400. (b) M = 6 and N varies from 200, 400 to 600.

presence of primary signals, the Rayleigh-fading channel is
adopted to evaluate the accuracy of the derived Gamma ap-
proximate Pd, which has been well studied in [37]–[40]. It
is shown in [38] that, in the Rayleigh-fading situation, the
columns of the channel matrix H follow a complex Gaussian
distribution with mean zero and covariance matrix Ψ due to the
correlation among the signals at the receiving antennas which
cannot be sufficiently spaced for physical size constraints. As
is indicated in [37], [38], [40], the correlated Rayleigh-fading
channel model is able to precisely characterize the behavior
of the practical channels. The (k, 
) entry of Ψ is determined
as [38, Eq.(27)]

φk� =
I0
(√

κ2 − 4π2d2k� + j4πκ sin(ψ)dk�

)
I0(κ)

,

(k, 
 = 1, . . . ,M) (21)

where I0(·) denotes the zero-order modified Bessel function,
κ controls the width of the angles-of-arrival (AOAs) of the
primary signals impinging upon the receiving antennas of the
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Fig. 4. Detection probability versus threshold for three primary signals in IID
noise. σ2

s1
= −5 dB. (a) M = 4 and N varies from 100, 200 to 300. (b) M =

6 and N varies from 200, 300 to 400.

SU, which can vary from 0 (isotropic scattering) up to ∞
(extremely non-isotropic scattering), ψ ∈ [−π, π) represents
the mean direction of the AOAs, and dk� stands for the distance,
which is normalized with respect to the wavelength λ, between
the k-th and 
-th antennas of the SU. In the simulation, we
set κ = 80 and ψ = π/2, and suppose that the antennas of
the SU are of the linear uniform array structure with the
inter-element distance being λ/2. As a result, the normalized
distance between the adjacent antennas equals 0.5. Without loss
of generality, the channel is normalized as gi = hi/‖hi‖ and
the noise variance is set to one for IID noise.

Fig. 4(a) demonstrates the numerical results for a single
primary signal in the Rayleigh fading channel and under the
situation of IID noise. Here, the number of antennas is 4, the
number of samples increases from 100, 200 to 300, and
the power of the primary signal is set as −5 dB. It is implied that
the derived detection probability is able to accurately predict the
detection performance for the volume-based approach. Fig. 4(b)
plots the Gamma approximate and exact detection probability
of the volume-based detection method for IID noise, where the

Fig. 5. Detection probability versus threshold for three primary signals in IID
noise. [σ2

s1
, σ2

s2
, σ2

s3
] = [−2,−3,−4] dB. (a) M = 4 and N varies from 100,

200 to 400. (b) M = 6 and N varies from 200, 400 to 800.

number of antennas is 6, the number of samples increases from
200, 300 to 400, and the signal power is the same as that in
Fig. 4(a). The numerical results again validate the efficiency
of the derived Gamma approximate Pd. The numerical results
for three primary signals with powers of [−2,−3,−4] dB are
plotted in Fig. 5. The number of antennas is 4 and the number
of samples is set as [100, 200, 400] in Fig. 5(a). We can observe
that the proposed Gamma approximate detection probability is
quite precise in terms of fitting the exact one. In Fig. 5(b), the
number of antennas and number of samples are set as M = 6
and N = [200, 400, 800], respectively. It is observed that the
derived Pd is very accurate in terms of predicting the detection
performance for the volume-based algorithm.

B. Detection Performance

In this subsection, let us evaluate the robustness as well as
accuracy of the volume-based detection algorithm for complex-
valued observed data by comparing its empirical ROC with
those of other representative methods. In particular, the decision
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threshold is varied to calculate the false-alarm probability and
its corresponding detection probability, leading to the ROC
curve. For the purpose of comparison, the numerical results
of the John’s, AGM (or ST), Hadamard ratio as well as ED
detectors are provided. Recalling that the true noise variance is
unknown a priori to the receiver in practice, the ED approach is
thereby used herein as the benchmark. In addition, the Rayleigh
fading channel model addressed above is employed. All the
numerical results are obtained from 105 Monte Carlo trials.

The ROCs of the volume-based, AGM, John’s, Hadamard
ratio and ED algorithms in Rayleigh fading channel and IID
noise are demonstrated in Fig. 6, where the number of antennas
equals 4. It is indicated from Fig. 6(a), where the number
of samples is 10, the number of primary signals is one and
its power equals 8 dB, that the volume-based approach is
superior to the AGM and Hadamard ratio methods but inferior
to John’s detector which is known to be the locally most
powerful invariant test for sphericity. Moreover, all of them
are inferior to the true noise variance based ED approach. The
similar results are observed in Fig. 6(b), where the numbers
of antennas and samples remain unchanged while the number
of primary signals increases to three and their powers are set
as [σ2

s1
, σ2

s2
, σ2

s3
] = [5, 2, 0] dB. This indicates that the volume-

based detector surpasses the AGM and Hadamard ratio methods
but is not as accurate as John’s approach in the scenario
of IID noise. However, as the sample number increases to
50, the volume-based algorithm is able to provide the same
accuracy as John’s algorithm which has been proved to be
the most powerful for the small sample case. The numerical
results for the same signal parameters and channel model but
different noise model, namely, the non-IID noise, are plotted
in Fig. 7, where the noise variances are [1, 1.7,−0.7,−2] dB
and the averaged noise variance is equal to one. Under such a
non-IID noise condition, the volume-based detector is capable
of offering the best detection performance among the blind
methods. This in turn implies that the volume-based approach
is superior to the Hadamard ratio method in accuracy and to the
AGM and John’s schemes in robustness against the deviation
of IID noise. As pointed out in Section II-B, the Hadamard
ratio algorithm cannot utilize the correlation among the primary
signals to improve the detection accuracy although it is robust
against the non-IID noise. Unlike the Hadamard ratio approach,
the denominator in the volume-based test expression consid-
erably increases while the numerator, i.e., the determinant of
covariance matrix, significantly decreases due to the signal
correlation, finally resulting in notable reduction in the total
volume. This is why the volume-based test scheme is able to
provide the superiority over the Hadamard ratio method. As
the AGM and John’s detectors are derived from the assumption
of IID noise, they cannot provide the robustness against the
non-IID noise.

The ROCs of various algorithms for M = 6 and IID noise
are depicted in Fig. 8. Similar to the numerical results in
Fig. 6, the volume-based method is superior to the AGM and
Hadamard ratio schemes but inferior to John’s scheme in de-
tection performance. The numerical results of various methods
for M = 6 and non-IID noise are shown in Fig. 9, where the
noise powers are set as [−1.2,−0.3, 2.6,−0.8, 2.4,−2.7] dB.

Fig. 6. ROCs of various detectors for Rayleigh fading channel in IID
noise. (a) M = 4, N = 10, d = 1, and σ2

s1
= 8 dB. (b) M = 4, N = 10,

d = 3, and [σ2
s1
, σ2

s2
, σ2

s3
] = [5, 2, 0] dB. (c) M = 4, N = 50, d = 3, and

[σ2
s1
, σ2

s2
, σ2

s3
] = [0,−3,−5] dB.

Again, it is seen in Fig. 9 that the volume-based detector out-
performs the robust Hadamard ratio test and non-robust AGM
as well as John’s approaches in detection accuracy. Moreover,
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Fig. 7. ROCs of various detectors for Rayleigh fading channel in non-IID
noise. (a) M = 4, N = 10, d = 1, and σ2

s1
= 8 dB. (b) M = 4, N = 10,

d = 3, and [σ2
s1
, σ2

s2
, σ2

s3
] = [5, 2, 0] dB. (c) M = 4, N = 30, d = 3, and

[σ2
s1
, σ2

s2
, σ2

s3
] = [0,−3,−5] dB.

for M = 6, N = 30, and [σ2
s1
, σ2

s2
, σ3

s3
] = [0,−3,−5] dB, the

volume-based algorithm is even superior to the ED scheme, as
illustrated in Fig. 9(c).

Fig. 8. ROCs of various detectors for Rayleigh fading channel in IID
noise. (a) M = 6, N = 10, d = 1, and σ2

s1
= 8 dB. (b) M = 6, N = 10,

d = 3, and [σ2
s1
, σ2

s2
, σ2

s3
] = [5, 2, 0] dB. (c) M = 6, N = 50, d = 3, and

[σ2
s1
, σ2

s2
, σ2

s3
] = [0,−3,−5] dB.

V. CONCLUSION

The analytic formulae for the false-alarm and detection
probabilities of the volume-based approach have been derived
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Fig. 9. ROCs of various detectors for Rayleigh fading channel in non-IID
noise. (a) M = 6, N = 10, d = 1, and σ2

s1
= 8 dB. (b) M = 6, N = 10,

d = 3, and [σ2
s1
, σ2

s2
, σ2

s3
] = [5, 2, 0] dB. (c) M = 6, N = 50, d = 3, and

[σ2
s1
, σ2

s2
, σ2

s3
] = [0,−3,−5] dB.

for the IID noise, which provide accurate theoretical threshold
calculation and efficient approach to evaluate its sensing per-
formance. By means of calculating the accurate first and second

moments of the test statistic under the signal-absence hypoth-
esis, we are able to employ the moment-matching method to
accurately derive the Gamma distribution. Accordingly, the
theoretical decision threshold can be accurately determined
as well. On the other hand, by computing the accurate first-
and second-order moments of the test statistic under the
signal-presence hypothesis, we are capable of approximating
the Gamma distribution for the volume-based test statistic,
ending up with accurate analytic expression for the detection
probability. Extensive numerical results validate our theoretical
analysis.

As has been pointed out in Sections I and IV-A, it is quite
difficult to derive the false-alarm probability of the volume-
based detector for the non-IID noise situations because the
noise covariance matrix is unknown in practice. More specif-
ically, the noise covariance matrix can be diagonal for non-
uniform spatially white noise but arbitrary for spatially color
noise. Derivation of the analytic false-alarm probability of the
volume-based method in these non-IID noise scenarios will be
our future work.

APPENDIX A
PROOF OF PROPOSITION 1

Let R = NS =
∑N

t=1 xtx
H
t , which under H1 follows the

complex Wishart distribution, i.e., R ∼ WM (N,Σ). Setting
�k =

∑M
i=1 |rki|2 with rki being the (k, i) entry of R, it follows

from (12) that the volume-based test statistic becomes

ξ =
1

2

M∑
k=1

log �k − log |R|. (A.1)

We utilize the Delta method to approximately calculate the first
two moments of ξ. To proceed, we need to the following results
of complex Bartlett decomposition thanks to Goodman [41].

Lemma 1: Let R′ ∼ WM (N, IM ) and R′ = TTH where
T = (tij) is a complex lower triangular matrix with real and
positive diagonal elements, i.e., tii > 0, and non-diagonal el-
ements tij = tRij + jtIij (j > i) with R

ij and I
ij being the real

and imaginary parts of ij , respectively. Then, the elements of
T are all independent, 2tii ∼ χ2

2(N−i+1) (1 ≤ i ≤ M) with

χ2 being chi-square distribution and tRij ∼ N (0, 1/2), tIij ∼
N (0, 1/2)(1 ≤ j < i ≤ M).

According to Lemma 1, R can be represented in the form
of R = ATTHAH with A = Σ1/2. Then, the Taylor series
expansion of

ξ
Δ
= f(T ) =

1

2

M∑
k=1

log �k − 2 log |T | − 2 log |A| (A.2)

in the neighborhood of the means of tii, tRij and tIij for 1 ≤ j <
i ≤ M is given in (A.3), shown at the bottom of the next page.
In the sequel, the second-order approximation to the mean of ξ,

denoted as μ1
Δ
= E[ξ], is

μ1 ≈ f(T )|T=E[T ]

+
1

2

⎡
⎣ M∑

j<i

∂2f

∂
(
tRij
)2 |T=E[T ]Var

(
tRij
)
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+

M∑
j<i

∂2f

∂
(
tIij
)2 |T=E[T ]Var

(
tIij
)

+
M∑
i=1

∂2f

∂ (tii)
2 |T=E[T ]Var (tii)

]
. (A.4a)

Additionally, the first-order approximation to the variance of ξ,

denoted as ν1
Δ
= Var[ξ], is

ν1 ≈
M∑
j<i

∂f

∂tRij

∣∣∣∣∣∣
T=E[T ]

Var
(
tRij
)
+

M∑
j<i

∂f

∂tIij

∣∣∣∣∣∣
T=E[T ]

Var
(
tIij
)

+

M∑
i=1

∂f

∂tii

∣∣∣∣∣
T=E[T ]

Var (tii) . (A.4b)

We are now at a position to determine the first two moments
of the elements of T , and the first and second-order partial
derivatives of f(T ) with respect to the elements of T . It follows
from Lemma 1 that

E
[
tRij
]
=E

[
tIij
]
= 0 (1 ≤ j < i ≤ M) (A.5a)

Var
[
tRij
]
=Var

[
tIij
]
=

1

2
(1 ≤ j < i ≤ M) (A.5b)

E [tii] =
Γ(n− i+ 3

2 )

Γ(n− i+ 1
2 )

(1 ≤ i ≤ M) (A.5c)

Var[tii] =n− i+ 1−
(
Γ(n− i+ 3

2 )

Γ(n− i+ 1
2 )

)2

(1 ≤ i ≤ M).

(A.5d)

On the other hand, the first-order partial derivatives of f(T )
with respect to tRij , tIij , and tii are computed in (A.6), shown
at the bottom of the page. In addition, the second-order partial
derivatives of f(T ) with respect to tRij , tIij , and tii are calculated
by (A.7), shown at the bottom of the next page. Here, the first-
order partial derivatives of rRij and rIij with respect to tRij , tIij ,
and tii are given, respectively, as

∂rRk�
∂tRij

=
(
aRika

R
j� + aIika

I
j�

)
E[tii] (A.8a)

∂rRk�
∂tIij

=
(
aIika

R
j� − aRika

I
j�

)
E[tii] (A.8b)

f(T )≈f(T )|T=E[T ]+

M∑
j<i

∂f

∂tRij

∣∣∣∣∣
T=E[T ]

(
tRij − E

[
tRij
])
+

M∑
j<i

∂f

∂tIij

∣∣∣∣∣
T=E[T ]

(
tIij−E

[
tIij
])
+

M∑
i=1

∂f

∂tij

∣∣∣∣
T=E[T ]

(tij−E [tij ])

+
1

2

⎡
⎢⎣ M∑

p<q

M∑
j<i

∂2f

∂tRij∂t
R
pq

∣∣∣∣∣∣
T=E[T ]

(
tRij−E

[
tRij
]) (

tRpq−E
[
tRpq
])

+
M∑
p<q

M∑
j<i

∂2f

∂tIij∂t
I
pq

∣∣∣∣∣∣
T=E[T ]

(
tIij − E

[
tIij
]) (

tIpq − E
[
tIpq
])

+
M∑
p=1

M∑
i=1

∂2f

∂tpp∂tii

∣∣∣∣∣
T=E[T ]

(tpp − E [tpp]) (tii − E [tii]) + 2
M∑
p<q

M∑
j<i

∂2f

∂tRij∂t
I
pq

∣∣∣∣∣∣
T=E[T ]

(
tRij − E

[
tRij
]) (

tIpq − E
[
tIpq
])

+ 2

M∑
p=1

M∑
j<i

∂2f

∂tRij∂tpq

∣∣∣∣∣∣
T=E[T ]

(
tRij−E

[
tRij
])

(tpp−E [tpp]) + 2

M∑
p=1

M∑
j<i

∂2f

∂tIij∂tpq

∣∣∣∣∣∣
T=E[T ]

(
tIij − E

[
tIij
])

(tpp − E [tpp])

⎤
⎥⎦

(A.3)

∂f

∂tRij

∣∣∣∣∣
T=E[T ]

=
1

2

M∑
k=1

M∑
�=1,k �=�

[
2rRk�
�k

∂rRk�
∂tRij

+
2rIk�
�k

∂rIk�
∂tRij

]
+

1

2

M∑
k=1

2rkk
�k

∂rkk
∂tRij

(A.6a)

∂f

∂tIij

∣∣∣∣∣
T=E[T ]

=
1

2

M∑
k=1

M∑
�=1,k �=�

[
2rRk�
�k

∂rRk�
∂tIij

+
2rIk�
�k

∂rIk�
∂tIij

]
+

1

2

M∑
k=1

2rkk
�k

∂rkk
∂tIij

(A.6b)

∂f

∂tii

∣∣∣∣
T=E[T ]

=
1

2

M∑
k=1

M∑
�=1,k �=�

[
2rRk�
�k

∂rRk�
∂tii

+
2rIk�
�k

∂rIk�
∂tii

]
+

1

2

M∑
k=1

2rkk
�k

∂rkk
∂tii

− 2

E[tii]
(A.6c)
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∂rRk�
∂tii

=2
(
aRika

R
i� + aIika

I
i�

)
E[tii] (A.8c)

and

∂rIk�
∂tRij

=
(
aRika

I
j� − aIika

R
j�

)
E[tii] (A.8d)

∂rIk�
∂tIij

=
(
aRika

R
j� + aIika

I
j�

)
E[tii] (A.8e)

∂rIk�
∂tii

=2
(
aIika

R
j� − aRika

I
j�

)
E[tii]. (A.8f)

Moreover, the second-order partial derivatives of rRij and rIij
with respect to tRij , tIij and tii are given, respectively, as

∂2rRk�

∂
(
tRij
)2 =2

(
aRika

R
i� + aIika

I
i�

)
(A.8g)

∂2rRk�∂
(
tIij
)2

=2
(
aRika

R
i� + aIika

I
i�
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Substituting (A.8) into (A.6) and (A.7), and then inserting the
so-obtained results along with (A.5) into (A.4), we eventually
attain the mean μ1 and variance ν1 for calculating α1 and β1 in
(14). This completes the proof of Proposition 1.

APPENDIX B
PROOF OF PROPOSITION 2

For the signal-absence hypothesis, we have A = IM . It
follows from (A.4) and (A.5) that the mean and variance of ξ
under H0, denoted by μ0 and ν0, respectively, can be given as
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where f(T ) = (1/2)
∑M

k=1 log �k − 2 log |T |. Moreover, it
follows from (A.6), (A.7), and (A.8) that the first and second-
order partial derivatives of f(T ) with respect to the elements of
T can be simplified, respectively, as
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where
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Thus, inserting (B.4) into (B.2) and (B.3), and then substituting
the so-obtained results into (B.1) yield μ0 and ν0 for computing
α0 and β0 in (17). The proof of Proposition 2 is finished.
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