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Abstract—Subspace-based methods rely on singular value de-
composition (SVD) of the sample covariance matrix (SCM) to
compute the array signal or noise subspace. For large array,
triditional subspace-based algorithms inevitably lead tointensive
computational complexity due to both calculating SCM and per-
forming SVD of SCM. To circumvent this problem, a Nyström-
Based algorithm for array subspace estimation is proposed in this
paper. In the proposed algorithm, we construct an approximated
rank-k SVD of SCM without computing SCM, leading to com-
putational simplicity. Statistical analysis and simulation results
show that the rank-k SVD signal-subspace estimation algorithm
(RKSSE) is computationally simple.

I. I NTRODUCTION

Large sensor arrays are widely used in detection and sig-
nal processing areas, such as direction of arrival[1], source
localization[2], beamforming[3], biomedicine[4], etc..And
most of these algorithms are subspace based. However, as a
result of the large-scale arrays which has a tremendous number
of sensors, the use of subspace-based algorithms are hindered,
because these methods are all computationally burdened since
they inevitably involve the spectral decomposition of a co-
variance matrix to obtain eigenvectors and the corresponding
eigenvalues.

In order to reduce the computational cost associated
with subspace-based algorithms, we can estimate the SCM
approximately[5] and develop some modefied low-complexity
SVD or EVD method. For the first reason, Nicholas proposed
a new covariance estimator based on the Nyström method for
large array. For the second reason, a numerous alternatives
were proposed by several authors. Marcos[6] proposed the
propagator method to estimate noise subspace. Xin J.[7] used
the least-mean-square (LMS) or normalized LMS (NLMS)
algorithm to obtain signal-subspace. Recently, K. Mahata[8]
used an alternative data model (RDM) to reduce the dimen-
sion of the signal subspace. Kaushik[9] developed weighted
subspace fitting approaches using a modefied RDM and also
proposed a computationally efficient suboptimal weighting
method.

In this paper, the proposed method is expected to ensure
computational savings and robustness. We begin with formu-
lating the SCM and SVD problem in large array scenario and

reviewing the Nyström method. Then we construct a rank-
k SVD approach that keepsk largest eigenvalues of SCM
and set the others to zeros to find the signal-subspace directly
without applying SVD of SCM (SCM-SVD). At the end of
the paper, an application to DOA estimation is presented
through comparing RKSSE based MUSIC with SCM-SVD
based MUSIC.

II. PROBLEM FORMULATION

A. Signal Model

Consider a uniform linear array(ULA) withm identical
sensors. There arek(k < m) uncorrelated narrow-band source
signals impinging on the array from directionsθ1, θ2, · · · , θk
(θ is the azimuth angle). Assume that there aren snapshots
x(1),x(2), · · · ,x(n) available. Them × 1 array observation
vector is modeled as

x(t) = As(t) + n(t) (1)

wheres(t) is k×1 vector of source waveforms;n(t) represents
additive Gaussian noise with mean zero and autocorrelation
matrix E{n(t)n(t)H} = σ2

I (E{·} means statistical expec-
tion); A(θ) = [a(θ1), · · · , a(θk)] ∈ Cm×k denotes the array
manifold matrix and

a(θ) = [1, ej(2π/λ)dsinθ, · · · , ej(2π/λ)d(m−1)sinθ]T

is them×1 steering vector. In addition,λ is the carrier wave-
length,d is the interelement spacing. The sample covariance
matrix can be expressed as

R̂ =
1

n
XX

H (2)

whereX = [x(1),x(2), · · · ,x(n)] is them× n data matrix.
The superscripts ”T” and ”H” stand for the transpose and
conjugate transpose, respectively.

B. Nystr̈om Method For Matrix Approximation

Let M ∈ Cm×m be a aquare matrix. We decomposeM as

M =

[

M11 M12

M21 M22

]

(3)



whereM11 ∈ C
k×k, M12 ∈ C

k×(m−k), M21 ∈ C
(m−k)×k

andM22 ∈ C(m−k)×(m−k). LetUΛU
−1 be the EVD ofM11,

whereU ∈ Ck×k is the eigenvectors matrix andΛ ∈ Ck×k

is the eigenvalues matrix. Our aim is to capture the colum
eigenvectors ofM according toU. Here we define

Ũ = M21UΛ
−1 (4)

and
Ṽ = Λ

−1
U

−1
M12. (5)

Then we extend (4) and (5) into a matrix̂U, V̂, respectively,
as the following form

Û =

[

U

M21UΛ

]

(6)

and
V̂ =

[

U
−1

Λ
−1

U
−1

M12

]

(7)

The ”Nyström” representation of̂M becomes

M̂ = ÛΛV̂ =

[

U

M21UΛ
−1

]

Λ
[

U
−1

Λ
−1

U
−1

M12

]

=

[

M11 M12

M21 M21M
†
11M12

]

(8)

where(·)† denotes the pseudo-inverse. Obviously, the Nyström
approximation does not modifyM11, M12 and M21, but
replacesM22 by M21M

†
11M12.

III. PROPOSEDNYSTRÖM-BASED RANK -K SVD
SIGNAL -SUBSPACEESTIMATION METHOD

The covariance matrixR = E{XX
H} is a symmetric

matrix, so it can be partitioned as

R =

[

R11 R12

R
H
12 R22

]

(9)

X is am× n array received data matrix, partitioned as[5]

X =

[

X1

X2

]

(10)

whereX1 ∈ Ck×n, X2 ∈ C(m−k)×n andk is the number of
source signals. We define

R11 = E{X1X
H
1 }

R12 = E{X1X
H
2 }

R22 = E{X2X
H
2 }.

Our goal is to find a low-complexity method to approximate
the eigenvalues and eigenvectors of the covariance matrix.
Here we assume all the transmitted signals are uncorrelated,
hence,R11 is a nonsingular matrix andrank(R11) = k.

The apprximation technique is based on the Nyström
method, through construct the SVD[10] ofRNCE to approx-
imate signal subspace, whereRNCE is the Nyström-based
covariance matrix estimator[5].
Let

F =

[

R11

R
H
12

]

R
−1/2
11 ,

the EVD of symmetric matrixFH
F is given byUFΛFU

H
F

.
Let

D = Λ
1/2
F

U
H
F
UFΛ

1/2
F

and the EVD ofD is UDΛDU
H
D

, then the signal-subspace
Us ∈ Cm×k is given as

Us = FUFΛ
−1/2
F

UD. (11)

We want to underline that the Nyström-based covariance
estimator

RNCE = UsΛFU
H
s

=

[

R11 R12

R
H
12 R

H
12R

−1
11 R12

]

(12)

IV. SIMULATION AND PERFORMANCEANALYSIS

A. Signal Subspace Deviation

Since the space spanned by the signal subspace is equivalent
to the space spanned by the array manifoldA(θ)[11], we use
the function

D(Ûs,A(θ)T) =
∥

∥

∥
Ûs −A(θ)T

∥

∥

∥

2

F
(13)

to define the deviation between the estimated signal subspace
Ûs and the theoretical signal subspace.

Fig.1 shows the deviation of RKSSE and SCM-SVD method
versus SNR. When the SNR is low, the performanc of the
proposed method is a little poor than SCM-SVD. But with the
increasing of SNR, RKSSE can achieve the same performance
of SCM-SVD under a much lower computational complexity.

B. Computational Complexity

The computational complexity of SCM-SVD method is
O(m3) + O(m2n) and mainly reflected in estimating SCM
and do SVD of SCM. So this method on efficiency is in-
tolerable for large array scenario. To the proposed method,
however, it is with no need for computing the SCM and
doing SVD. The computational bottleneck of the algorithm
is in the formation ofFH

F andUs with complexityO(mk2)
andO(mk+2k3), respectively. So the total computation load
is aboutO(mk2 + mk) since k ≪ m in the large array
application.

In the simulation,m varies from 20 to 400, snapshot is
fixed to 100 and 4 uncorrelated signals impinging on the array.
The simulation results depicted in Fig.2 provide a comparison
of the computational complexity as a function of the number
of sensorm. We can find the RKSSE algorithm is nearly
linear increasing withm becoming larger for fixedk. When
m is very large, RKSSE is much more efficient than the
conventional method since RKSSE is insensitive ofm.

C. Example: DOA Estimation

In this part, we consider a narrowband case where(m, k) =
(60, 4) and snapshot is fixed to 100. The true DOAs are
[−21◦, 2◦, 25◦, 50◦]. The sensor array is linear uniform with
d/λ = 1/2. The spatial noisen(t) is zero-mean, uniformly
white Gaussian noise. SNR varies from 2 to 28dB to observe
the performance of algorithms.
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Fig. 1: Simulation of signal subspace deviation versusSNR. (m =

60, k = 4, n = 100, SNR = 2 : 24)
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Fig. 2: Time complexity of the various algorithms versusm.

A Monte Carlo simulation was carried out to evalue the
RMSE angle error performance of RKSSE and SCM-SVD
based root-MUSIC. The number of Monte Carlo trialsK is
500. RMSE is calculated by

RMSE =

√

√

√

√

1

K

K
∑

k=1

| θ̂k − θk |2

In Fig.3, we can obtain that the proposed method achieves
almost the same accuracy against SCM-SVD based when SNR
is larger than 6dB.

V. CONCLUSION

In this article, we has addressed a Nyström-Based signal-
subspace estimation method. Because of the computational
advantages of the Nyström-based covariance estimator, its
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Fig. 3: RMSE angle error performance of the various algorithms in
narrowband case versus SNR.

SVD can be fast constructed by a rank-k SVD approach
which keepsk large eigenvalues of SCM and set the others to
zeros. Through its use in DOA estimation, we can found the
proposed method can substantially reduce computation with
little decline in low SNR compared classical method.
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