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Abstract—Subspace-based methods rely on singular value de- reviewing the Nystrom method. Then we construct a rank-
composition (SVD) of the sample covariance matrix (SCM) to k¢ SVD approach that keepk largest eigenvalues of SCM
compute the array signal or noise subspace. For large array, gnq set the others to zeros to find the signal-subspace ldirect

triditional subspace-based algorithms inevitably lead tantensive . .
computational complexity due to both calculating SCM and pe without applying SVD of SCM (SCM-SVD). At the end of

forming SVD of SCM. To circumvent this problem, a Nystrom- the paper, an application to DOA estimation is presented
Based algorithm for array subspace estimation is proposechithis  through comparing RKSSE based MUSIC with SCM-SVD
paper. In the proposed algorithm, we construct an approximéed pased MUSIC.
rank-k SVD of SCM without computing SCM, leading to com-
putational simplicity. Statistical analysis and simulation results Il. PROBLEM FORMULATION
show that the rank-k SVD signal-subspace estimation algorithm )
(RKSSE) is computationally simple. A. Signal Model

Consider a uniform linear array(ULA) withn identical
) ) ) sensors. There aigk < m) uncorrelated narrow-band source
Large sensor arrays are widely used in detection and Si9gnals impinging on the array from directiofis s, - - - , 0y,

nal processing areas, such as direction of arrival[1], @Ul(g is the azimuth angle). Assume that there arsnapshots
localization[2], beamforming[3], biomedicine[4], etcAnd x(1),x(2),--- ,x(n) available. Them x 1 array observation
most of these algorithms are subspace based. However, 33&0r is modeled as

result of the large-scale arrays which has a tremendous@umb

of sensors, the use of subspace-based algorithms are &ihder x(t) = As(t) + n(t) (1)
because these methods are all computationally burdeneel sin

they inevitably involve the spectral decomposition of a coVheres(t) is kx 1 vector of source waveformsj(t) represents

variance matrix to obtain eigenvectors and the corres dIaddltlve Gaussian noise with mean zero and autocorrelation

oi matrix E{n(t)n(t)#} = %I (E{-} means statistical expec-
genvalues. Co ok

In order to reduce the computational cost associatdg: A0) = [a(th), -, a(0)] € C denotes the array
with subspace-based algorithms, we can estimate the Smmfold matrix and

approximately[5] and develop some modefied low-complexity a(f) = [1, eI/ N)dsing 7ej(2w/k)d(m—1)sin€]T

SVD or EVD method. For the first reason, Nicholas proposed

a new covariance estimator based on the Nystrom method i®¢hem x 1 steering vector. In additior) is the carrier wave-
large array. For the second reason, a numerous alternati@®gth,d is the interelement spacing. The sample covariance
were proposed by several authors. Marcos[6] proposed {Ratrix can be expressed as

propagator method to estimate noise subspace. Xin J.[d] use . 1 H

the least-mean-square (LMS) or normalized LMS (NLMS) R = 5XX )

algorithm to obtain signal-subspace. Recently, K. Malﬁta[WhereX — [x(1),x(2), -+, x(n)] is them x n data matrix.

used an alternative data model (RDM) to reduce the dim rscripts T and W’ stand for the tran nd
sion of the signal subspace. Kaushik[9] developed weight E:e_ SUperscrpts I a sta or the transpose a
onjugate transpose, respectively.

subspace fitting approaches using a modefied RDM and arss
proposed a computationally efficient suboptimal weighting Nystbsm Method For Matrix Approximation

method. mxm i
In this paper, the proposed method is expected to ensuré‘et MeC be a aquare matrix. We decompdsbas
Mll M12 :|

computational savings and robustness. We begin with formu-
lating the SCM and SVD problem in large array scenario and My Moy

I. INTRODUCTION

M = [ @)



where M;; € CF*¥F My € CF*¥(m=F) My, € Cm~k*xk  the EVD of symmetric matri¥? F is given byUp ApUE.
andMay, € C(m—F)*x(m=k) | et UAU! be the EVD ofM,;, Let

whereU € C*** is the eigenvectors matrix anl € CF** D = A/*UFUrAY?

is the eigenvalues matrix. Our aim is to capture the colu

m . o ——
eigenvectors oM according toU. Here we define and the EVD ofD is UpApUp, then the signal-subspace

U, € C™** is given as

U =M, UA! 4 _
2t “) U, = FUpA; ' *Up. (11)
and . . .
V= AU "My, ) We_ want to underline that the Nystrom-based covariance
o estimator
Then we extend (4) and (5) into a matik, V, respectively, Ryop = U ApUY
as the following form ° °
_[ Ru Rio (12)
O U ©6) R, RIR;Ri
My, UA
q IV. SIMULATION AND PERFORMANCEANALYSIS
an : -
N (U A'U-'My, | ) A. Signal Subspace Deviation

_ . Since the space spanned by the signal subspace is equivalent
The "Nystrom” representation d¥1 becomes to the space spanned by the array manifal@)[11], we use
the function

M = UAV = [ M EA* ]A[ Ul AU My, | . X 2
21 D(U,, A0)T) = [T, - AO)T|| (13)
| My M2 _ L T
= | My M21MLM12 to define the deviation between the estimated signal subspac

8 U, and the theoretical signal subspace.

Fig.1 shows the deviation of RKSSE and SCM-SVD method
where(-)T denotes the pseudo-inverse. Obviously, the Nystrogarsus SNR. When the SNR is low, the performanc of the
approximation does not modifpy;, My, and May, but proposed method is a little poor than SCM-SVD. But with the
replacesMp; by My M], M. increasing of SNR, RKSSE can achieve the same performance

1. PROPOSEDNYSTROM-BASED RANK-K SVD of SCM-SVD under a much lower computational complexity.

SIGNAL -SUBSPACEESTIMATION METHOD B. Computational Complexity
The covariance matriR = E{XX"} is a symmetric  The computational complexity of SCM-SVD method is
matrix, so it can be partitioned as O(m3) + O(m?n) and mainly reflected in estimating SCM
R,; Ry, and do SVD of SCM. So this method on efficiency is in-
R = [ RZ Ray ] () tolerable for large array scenario. To the proposed method,

however, it is with no need for computing the SCM and
doing SVD. The computational bottleneck of the algorithm
X — X1 (10) is in the formation off?F and U, with complexity O (mk?)
T Xe andO(mk + 2k3), respectively. So the total computation load
) 5 : :
whereX, € CExn. X, ¢ Cm—kxn andk is the number of is aboutO(mk* + mk) sincek < m in the large array

X is am x n array received data matrix, partitioned as[5]

ionals. We defi application.
source signais. We define In the simulation,m varies from 20 to 400, snapshot is
Ry = E{Xlx{f} fixed to 100 and 4 uncorrelated signals impinging on the array
R, = E{X,X[} The simulation results depicted in Fig.2 provide a comparis

o of the computational complexity as a function of the number
Ry = E{X,X;}. of sensorm. We can find the RKSSE algorithm is nearly
Our goal is to find a low-complexity method to approximaténear increasing withn becoming larger for fixed. When
the eigenvalues and eigenvectors of the covariance matrix.is very large, RKSSE is much more efficient than the
Here we assume all the transmitted signals are uncorrelateenventional method since RKSSE is insensitiverof
hence,R;; is a nonsingular matrix anthnk(R1) = k. C. Example: DOA Estimation

The apprximation technique is based on the Nystrom i .
method, through construct the SVD[10] Bixcr to approx- N this part, we consider a narrowband case witerek) =
(60,4) and snapshot is fixed to 100. The true DOAs are

imate signal subspace, wheRncg is the Nystrom-based a ) )
[—21°,2°,25° 50°]. The sensor array is linear uniform with

covariance matrix estimator[5]. i . . !
Let d/X = 1/2. The spatial noisen(t) is zero-mean, uniformly

Ri R-1/2 white Gaussian noise. SNR varies from 2 to 28dB to observe
o the performance of algorithms.
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Fig. 1: Simulation of signal subspace deviation versUS R. (m =
60, k =4, n =100, SNR = 2 : 24)
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Fig. 2: Time complexity of the various algorithms versus

A Monte Carlo simulation was carried out to evalue thEG]

-2 T T T T T
10 g : + =0~ Proposed method ]
BN  =@- Triditional method
9'\
B
. ’ﬁ\
&h
N,
W a
2 “®
Z ~
& 8
-3
10 » AN 1
=¥ \n\
[-§
o
5 10 15 20 25
snr(dB)

Fig. 3: RMSE angle error performance of the various algamghin
narrowband case versus SNR.

SVD can be fast constructed by a rakksSVD approach
which keepsk large eigenvalues of SCM and set the others to
zeros. Through its use in DOA estimation, we can found the
proposed method can substantially reduce computation with
little decline in low SNR compared classical method.
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In this article, we has addressed a Nystrom-Based signal-
subspace estimation method. Because of the computational
advantages of the Nystrom-based covariance estimator, it



